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Abstract

A graph is an X-graph of Y-graphs (or two-level clustered graph) if its vertices can be
partitioned into subsets (called clusters) such that each cluster induces a graph belonging to
the given class Y and the graph of the clusters belongs to another given class X. Two-level
clustered graphs are a useful and interesting concept in graph drawing.

We consider the complexity of recognizing two-level clustered graphs. We prove that, for a
given integer k¿ 2, it is NP-complete to decide whether or not a graph is a path of length k−1
of paths (cycles). This solves a problem posed by Schreiber, Skodinis and Brandenburg. Similar
reductions show that it is NP-complete to decide whether or not a graph is a k-star/k-clique of
paths (cycles).

In contrast, we show that k-graphs of path (cycles) can be recognized in polynomial time
when the inputs are restricted to graphs of bounded treewidth.
? 2003 Elsevier B.V. All rights reserved.

1. Introduction

Two-level clustered graphs have been introduced by Kratochv;<l, Goljan and Ku>cera
in a monograph on string graphs [11]. Later on Brandenburg considered this concept
in connection with graph drawing [5]. Given two graph classes X and Y, a graph
G is called an X-graph of Y-graphs (or two-level clustered graph, or X-graphs of
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Table 1
Known results

X Y Complexity Reference

Planar graphs {Kn:n¿ 1} NP-complete [11]
{Kk}; k¿ 3 {Kn:n¿ 1} NP-complete [5]
{Pn: n¿ 1} {Kn:n¿ 1} O(n3) [5]
{Cn:n¿ 6} {Kn:n¿ 1} O(n2) [5]
Trees {Pn:n¿ 1} NP-complete [13]
Trees {Cn:n¿ 3} NP-complete [13]
Trees {Pn:n6 k} O(n2k+3) [13]
Trees {Cn:n6 k} O(n2k+3) [13]
{Pk}; k¿ 2 {Pn:n¿ 1} NP-complete This paper
{Pk}; k¿ 2 {Cn:n¿ 3} NP-complete This paper
{Kk}; k¿ 2 {Pn:n¿ 1} NP-complete This paper
{Kk}; k¿ 2 {Cn:n¿ 3} NP-complete This paper
{K1; k}; k¿ 1 {Pn:n¿ 1} NP-complete This paper
{K1; k}; k¿ 1 {Cn:n¿ 3} NP-complete This paper

Y-graphs) if its vertex set can be partitioned into smaller sets (called clusters) such
that

• every cluster induces a graph isomorphic to a member in Y, and
• the graph G∗ obtained from G by shrinking every cluster into a single vertex and re-

placing multiple edges then replaced by a single one is isomorphic to a graph in X.

For examples, every m×n-grid is a path of paths and every 2n×2n-grid is a path of
cycles. Two-level clustered graphs can be drawn according to their structure: On the
top level draw the X-graph G∗ and on the second level the Y-graphs (the clusters)
of G. It is clear that drawing in this way will reLect the nature of the graph and its
understanding; see [5,13] for more details.

In [5,13], the recognition problem of two-level clustered graphs has been discussed:
Given two graph classes X and Y. Is the graph G an X-graphs of Y-graphs? Table 1
summarizes known results.

In the time bounds n denotes the number of vertices of the graph considered. For
an integer k a k-clique (k-path, k-cycle) is a clique (chordless path, chordless cycle)
with k vertices. A k-star is a tree with k vertices and at least k − 1 leaves. A k-clique
(k-path, k-cycle, k-star) is also denoted by Kk (Pk; Ck ; K1; k−1).

It is interesting to compare the NP-completeness results for k-cliques of paths or
cycles with the polynomial time algorithms paths or cycles of cliques. Note that paths
or stars of l-paths or l-cycles can be recognized in polynomial time, see [13]. We do
not know the complexity of recognizing cliques of l-paths or l-cycles.

The problem of recognizing paths of paths was posed in [13,6]. In Section 2 we prove
the main result of this paper: Even the recognition of 2-paths of paths is NP-complete,
see Theorem 1. Our other NP-completeness results mentioned in Table 1 follow by
simple reductions.

In Section 3 we consider graphs on at most k vertices of paths or cycles.
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2. NP-completeness proofs

We start with the basic theorem of this section: Recognizing 2-paths of paths is
NP-complete.

Theorem 1. It is NP-complete to decide whether or not the vertex set of a connected
graph can be partitioned into two subsets each of which induces a path.

Proof. Clearly, the problem belongs to NP. To prove the NP-completeness, we will
reduce the NP-complete problem NOT-ALL-EQUAL 3SAT (see [9]) to our problem.

Not-All-Equal 3Sat. Let C be a collection of m clauses over the set U of n Boolean
variables such that every clause has exactly three variables. Is there a truth assignment
satisfying C such that each clause in C has at least one true and at least one false
literal?

Let C= {C1; : : : ; Cm} be a collection of m clauses with variable set U = {v1; : : : ; vn}
such that every clause Ci of C contains exactly three literals, Ci ={ci;1; ci;2; ci;3}, where
each literal ci; j (16 i6m; 16 j6 3) is either vk or vk for some suitable k. We will
construct a graph G =G(C) such that G is partitionable into two induced paths if and
only if C is satisQable such that each clause in C has at least one true and at least
one false literal.

For each variable vk ∈U let G(k) be the graph shown in Fig. 1. For each clause
Ci = {ci;1; ci;2; ci;3} let G(Ci) be the graph shown in Fig. 2.

Let G be the graph consisting of all graphs G(k), all graphs G(Ci), and additional
edges as follows:

• For all i; j and k: If the literal ci; j is v∈{vk ; vk}, then connect the vertices ci; j and
v by an edge.

• Add edges {xk ; xk+1}; {xk ; yk+1}; {yk ; xk+1}, and {yk ; yk+1} for all odd k¿ 1.
Add edges {uk ; uk+1}; {uk ; wk+1}; {wk; uk+1}, and {wk; wk+1} for all even k¿ 2.

• Add edges {zi;1; zi+1;1}; {zi;1; zi+1;2}; {zi;2; zi+1;1}; {zi;2; zi+1;2} for all even i¿ 2, and
{zi;3; zi+1;3}; {zi;3; zi+1}; {zi; zi+1;3}; {zi; zi+1} for all odd i¿ 1.

• Add edges {u1; z1;1}; {u1; z1;2}; {w1; z1;1}, and {w1; z1;2}.

Fig. 1. The graph G(k).
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Fig. 2. The graph G(Ci).

Suppose that G has a partition into two induced paths. Before giving a truth assign-
ment for C, we will make two claims. We assume that the vertices of G are colored
black and white such that the vertices of each color induce a path.

Claim 1. For every k, the labeled vertices vk and vk in G(k) belong to di:erent paths.

Proof. Otherwise, the 4-cycle induced by the four vertices of G(k) − {vk ; vk} would
belong to the same path, a contradiction.

Claim 2. If v∈{vk ; vk} is adjacent to ci; j, then v and ci; j belong to di:erent paths.

Proof. Without loss of generality, assume that vk and ci; j are adjacent. Suppose to
the contrary that vk and ci; j belong to the same path, say both are black. Then, by
Claim 1, vk is white. Since ci; j is black, at most one vertex of the 4-cycle induced
by the vertices of G(k) − {vk ; vk} is black. Otherwise, the black vertex vk would
have three black neighbors. But then the white vertex vk has three white neighbors in
G(k) − {vk ; vk}, a contradiction.

We deQne the truth assignment b for C as follows: if vk is black then b(vk)=true else
b(vk) = false. By Claim 1, b is well deQned. For each clause Ci, one of the labeled
vertices ci;1; ci;2; ci;3 is black and one of them is white, because they are pairwise
adjacent in G. By Claim 2, one of the corresponding neighbors in U ∪ { Rv: v∈U} of
ci; j is white, one is black. Thus, one of the literals in Ci is true and one is false by
the assignment b.

Suppose that C is satis<ed such that every clause has one true and one false literal.
First, color the labeled vertices ci; j in each G(Ci) black if the corresponding literal ci; j
in Ci is true; otherwise white. By assumption, for each i, at least one of ci;1; ci;2; ci;3
is black and at least one of them is white.
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Fig. 3. Two paths partition of G(k) giving colors for vk ; vk .

Fig. 4. Two paths partition of G(Ci) giving colors for ci;1; ci;2; ci;3.

If ci; j is adjacent to v∈{vk ; vk}, then color v black (white, respectively), according
to whether ci; j is white (black, respectively). Note that for each k, vk and vk are
diSerently colored.

Next, extend the black–white coloring in each G(k) and each G(Ci) as indicated in
Figs. 3 and 4.

More precisely, in each G(k), xk and wk receive the same color as vk , and uk and yk

receive the same color as vk . In particular, there is exactly one edge between G(k) and
G(k + 1) with two black endvertices and exactly one edge with two white endvertices.
Thus, all vertices of the same color in

⋃
k G(k) induce a path with one endvertex in

{u1; w1}.
For each i, the black–white coloring of {ci;1; ci;2; ci;3} can be extended for the whole

graph G(Ci) such that the vertices of the same color induce a path with one endvertex
in {zi;1; zi;2} and the other endvertex in {zi; zi;3}. In particular, there is exactly one edge
between G(Ci) and G(Ci+1) with two black endvertices and exactly one edge with two
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white endvertices. Thus, all vertices of the same color in
⋃

i G(Ci) induce a path with
one endvertex in {z1;1; z1;2}.

Since every vertex in {u1; w1} is adjacent to every vertex in {z1;1; z1;2} and the ci; j’s
and their neighbors in

⋃
k G(k) are diSerently colored, it follows that all vertices of

the same color in G induce a path.

Next, we prove that recognizing 2-paths of cycles is NP-complete.

Theorem 2. It is NP-complete to decide whether or not the vertex set of a connected
graph can be partitioned into two subsets each of which induces a cycle.

Proof. We modify the construction in the proof of Theorem 1 in an obvious way.
Given an instance C of NOT-ALL-EQUAL 3SAT, let G(k) and G(Ci) be the graphs
in Figs. 1 and 2. Recall that n and m denote the number of variables and clauses,
respectively. DeQne the vertices pn; qn; sm, and tm as follows:

If n is even, let pn := un, qn :=wn and if n is odd, let qn := xn, qn :=yn.
If m is even, let sm := zm;1, tm := zm;2 and if m is odd, let sm := zm;3, tm := zm.
Now, let G be the graph constructed in the proof of Theorem 1, and let G′ be the

graph obtained from G by adding the edges {pn; sm}; {pn; tm}; {qn; sm}, and {qn; tm}.
The arguments in proving Theorem 1 show that G′ can be partitioned into two induced
cycles if and only if C is satisQed such that each clause has at least one true and at
least one false literal.

In the following subsection we complete the proof of Theorem 3 stated at the end
of this section. In all these subsections, let G be a connected graph, and let k¿ 2 be
a Qxed integer. Let v0 be an arbitrary vertex of G.

2.1. Paths of paths (cycles)

Construct a graph H =H (G; k) from G and 2k−4 new vertices ai; bi (16 i6 k−2),
and new edges {v0; a1}; {v0; b1}; {ai; ai+1} for 16 i6 k− 3, {ai; bi} for 16 i6 k− 2,
and {ai−1; bi} for 26 i6 k − 2, see Fig. 5.

Clearly, if G is a 2-path of paths, H is a k-path of paths consisting of the two paths
in G and the k − 2 paths a1b1; a2b2; : : : ; ak−2bk−2.

Conversely, assume that H is a k-path of paths. If ak−2 and bk−2 belong to the
same cluster in H , then {ak−2; bk−2} is a cluster and corresponds to an endvertex of

Fig. 5. Path of paths.
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Fig. 6. Path of cycles.

Fig. 7. Star of paths (left) and of cycles (right).

the k-path H∗. Thus, H − {ak−2; bk−2} = H (G; k − 1) is a (k − 1)-path of paths, and
it follows, by induction on k, that G is a 2-path of paths.

If ak−2 and bk−2 belong to diSerent clusters in H , then ak−3 and ak−2, or ak−3 and
bk−2 must belong to the same cluster; say ak−3 and ak−2 belong to cluster C. Then
{bk−2} is a cluster and corresponds to an endvertex of the k-path H∗. Moreover, ak−2

is one endvertex of the path in H induced by cluster C, hence C − {ak−2} induces
a (nonempty) path in H . Thus, H − {ak−2; bk−2}= H (G; k − 1) is a (k − 1)-path of
paths. Again, by induction on k, G is a 2-path of paths.

We now consider the construction for paths of cycles. Let H be the graph ob-
tained from G by adding 3k − 6 new vertices ai; bi; ci; 16 i6 k − 2, and edges
{a1; v0}; {ai; ci}; {ai; bi}; {bi; ci} for 16 i6 k − 2, see Fig. 6.

It is easy to see that G is a 2-path of cycles if and only if H is k-path of cycles
(consisting of the two cycles in G and the k − 2 triangles a1b1c1; : : : ; ak−2bk−2ck−2).

2.2. Stars of paths (cycles)

Construct a graph H1 = H1(G; k) from G and 2k − 4 new vertices ai; bi, and edges
{ai; v0}; {bi; v0}; {ai; bi} for 16 i6 k − 2. Construct a graph H2 = H2(G; k) from G
and 3k − 6 new vertices ai; bi; ci, and edges {ai; v0}; {ai; bi}; {ai; ci} and {bi; ci} for
16 i6 k − 2, see Fig. 7.

Obviously G is a 2-path of cycles if and only if H2 is a k-star of cycles, consisting
of the two cycles in G and the k − 2 triangles a1b1c1; : : : ; ak−2bk−2ck−2.

We discuss now the case of k-stars of paths. Assume Qrst that G is a 2-path of
paths. Then, H1 is a k-star of paths, consisting of the two paths in G and the k − 2
paths a1b1; : : : ; ak−2bk−2. Where, the center vertex of the star H∗

1 corresponds to the
path in G that contains the vertex v0.
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Fig. 8. Clique of paths (left) and of cycles (right).

Conversely, assume that H1 is a k-star of paths. If ak−2 and bk−2 belong to the
same cluster in H1, then {ak−2; bk−2} is a cluster in H1 and corresponds to a leaf of
the k-star H∗

1 . Thus, H1 − {ak−2; bk−2} = H1(G; k − 1) is a (k − 1)-star of paths. By
induction on k it follows that G is a 2-path of paths.

Conversely, if ak−2 and bk−2 belong to diSerent clusters of H1, then ak−2 and v0, or
bk−2 and v0 must belong to the same cluster; say ak−2 and v0 belong to some cluster
C. Then {bk−2} is a cluster and corresponds to a leaf of the k-star H∗

1 . Moreover,
ak−2 is an endvertex of the path in H1 induced by C, hence C − {ak−2} induces a
path in H1. Thus, H1 − {ak−2; bk−2} = H1(G; k − 1) is a (k − 1)-star of paths. Again,
by induction on k, G is a 2-path of paths.

2.3. Cliques of paths (cycles)

Construct a graph H1 =H1(G; k) from G and 3k−6 new vertices ai; bi; ci, and edges
{ai; bi}; {ai; ci}; {ai; v} for 16 i6 k − 2 and v∈G, as well as {ai; aj} for i �= j. Thus,
every vertex of G is adjacent to every ai, and the ai’s form a complete graph Kk−2.
Let H2 = H2(G; k) be the graph obtained from H1 by adding the edges {bi; ci} for
16 i6 k − 2, see Fig. 8.

It is easy to see that G is a 2-path of cycles if and only if H2 is a k-clique of cycles,
consisting of the two cycles in G and the k − 2 triangles a1b1c1; : : : ; ak−2bk−2ck−2.

Assume that G is a 2-path of paths. Then, clearly, H1 is a k-clique of paths, con-
sisting of the two paths in G and the k − 2 paths b1a1c1; : : : ; bk−2ak−2ck−2.

Conversely, assume that H1 is a k-clique of paths. If, for some 16 i6 k − 2, bi

and ci belong to diSerent clusters in H1, then bi and ai, or ci and ai must belong to
the same cluster; say bi and ai belong to the same cluster. Then {ci} is a cluster. But
this is impossible, because H∗

1 is a clique.
Thus, for all i, bi and ci belong to the same cluster. Then {ai; bi; ci} is a cluster for

each i. It follows that G must consist of two clusters. That is, G is a 2-path of paths.
We summarize the results of this section in the following theorem.

Theorem 3. Let k¿ 2 be a <xed integer. It is NP-complete to decide whether or
not a given graph is a X-graph of Y-graphs for X∈{k-paths; k-stars; k-cliques} and
Y∈{paths; cycles}.
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3. Related graph partitioning problems

Let a k-graph be a graph on k vertices. By �(G) and  (G) we denote the smallest
integer k such that G is a k-graph of paths and cycles, respectively. For every k we
deQne the problems

kPP = {G: �(G)6 k}; PP = {(G; k): �(G)6 k};

kCP = {G:  (G)6 k}; CP = {(G; k):  (G)6 k}:
The problems kPP and kCP are NP-complete for k = 2 by Theorem 3. Hence, kPP

and kCP are NP-complete for all Qxed k¿ 2: For all graphs G, G belongs to 2PP
(2CP) if and only if G ∪ (k − 2)P3 (respectively, G ∪ (k − 2)C3) belongs to kPP
(respectively, kCP).

Theorem 4. PP is NP-complete, even when restricted to bipartite graphs.

Proof. Clearly PP is in NP. We prove the completeness by a reduction of the
HAMILTONIAN PATH problem HP. Let G = (V; E) be an instance of HP and let U be a
set of cardinality |U |=2(1+ |E|−|V |) disjoint from V ∪E. We deQne a bipartite graph
B = (E;U ∪ V; F) by F = {{e; u}: e∈E ∧ u∈U} ∪ {{e; v}: e∈E ∧ v∈ e}. Obviously,
G ∈HP if and only if (B; 2 + |E| − |V |)∈PP.

Note that the related problem “Can G be partitioned into k disjoint forests?” is
NP-complete ([9] Problem [GT14]).

Also, the problem “Can G be partitioned into k disjoint trees?” is NP-complete, as
pointed out by A. Brandst,adt: A graph G can be partitioned into a stable set and a
tree if and only if the graph G′, obtained from G by adding a new vertex adjacent to
all vertices in G, can be partitioned into two trees. Partitioning a graph into a stable
set and a tree is NP-complete [7]. Finally, G is a 2-graph of trees if and only if
G ∪ (k − 2)K1;3 is a k-graph of trees.

In the last section we will show that the parameters  (G) and �(G) can be determined
in polynomial time for graphs of bounded treewidth.

3.1. Tree-decomposition

The notion of treewidth was introduced by Robertson and Seymour [12] via tree-
decompositions.

De nition A. A pair (X; T ) is a tree-decomposition of a graph G = (V; E) if X =
{Xi: i∈ I} is a set of subsets of V and T = (I; F) is a tree such that

• ⋃
i∈I Xi = V ,

• ∀e∈E ∃i∈ I; e ⊆ Xi,
• ∀v∈V; T [{i: v∈Xi}] is connected.
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The width of a tree-decomposition (X; T ) is max{|Xi|: i∈ I}− 1, and the treewidth
tw(G) of G is the minimum width of a tree-decomposition of G. The decision problem
{(G; k): tw(G)6 k} is NP-complete [2]. However, for every integer k, there is a linear
time algorithm computing either a tree-decomposition of width at most k of the input
graph G or states tw(G)¿k [4].

Many NP-complete problems become polynomial or even linear when the inputs are
restricted to graphs of bounded treewidth [1,3], among them all problems that can be
stated in monadic second order logic (MSOL) [8].

For every Qxed k, the problems kPP and kCP are solvable in linear time when
the inputs are restricted to graphs of bounded treewidth, because both problems can
be expressed in MSOL. In the following we present dynamic programming algorithms
computing the parameters �(G) and  (G) of graphs G with tw(G)6 k. For simplicity
we restrict ourselves to nice tree-decompositions.

De nition. A tree-decomposition (X; T ) is nice if T has a root r such that all nodes
of T have at most two children and

• if i∈ I has no children, then i is called start node and Xi = ∅.
• If i∈ I has exactly one child j, then i is either an introduce node of T , i.e., Xi =

Xj ∪ {v} for a vertex v∈V \ Xj, or i is a forget node of T , i.e., Xi = Xj \ {v} for a
vertex v∈Xj.

• If i∈ I has two children j1 and j2, then i is a join node and Xi = Xj1 = Xj2 .

Moreover, the root r is a forget node of T with Xr = ∅.

It is known that every graph G with tw(G)6 k admits a nice tree-decomposition of
width at most k such that |I | = O(k|V (G)|), which can be obtained from an arbitrary
tree-decomposition in linear time [10].

3.2. Characteristic

Let G=(V; E) be an arbitrary graph. We call a set P of pairwise disjoint sets S ⊆ V
a packing if each set S ∈P induces either a chordless path or a chordless cycle in G.
The packing P is a partition if

⋃
P = V .

Let P be a Qxed packing of G. For every vertex v∈⋃
P let 〈〉 denoe the set S ∈P

with v∈ S. For two sets S; S ′ ⊆ V let [S; S ′] = {{s; s′}∈E: s∈ S ∧ s′ ∈ S ′}.
A system of representatives of P is a set R ⊆ ⋃

P such that ∀S ∈P: |S ∩ R| = 1.
The shrink graph of P is a graph (R; F) where R is a system of representatives of P
and F = {{s; t}: [〈s〉; 〈t〉] �= ∅}. If H = (R; F) is a shrink graph we deQne H − v and
H + v for all vertices v∈R and v∈V \ R, respectively, by

H − v = (R \ {v}; F \ {{v; w}: w∈R});

H + v = (R ∪ {v}; F ∪ {{v; w}: w∈R ∧ [〈v〉; 〈w〉] �= ∅}):



H.-O. Le et al. / Discrete Applied Mathematics 131 (2003) 199–212 209

Fig. 9. A partition of Gi into paths and the graph H of a characteristic.

For a set X ⊆ V we deQne the packings P− X and P + X by

P− X =
⋃

S

{U : U induces a connected component of G[S \ X ]};

P + X = {{x}: x∈X } ∪ (P− X );

where the union is taken over all sets S ∈P with S ∩ X �= ∅.
Now we Qx a nice tree-decomposition (X; T ) of G. For two nodes i and j of T we

write j6 i if j belongs to the subtree of T rooted at i, i.e., the path from the root r
to j in T passes through i. For all i∈ I let Gi be the subgraph of G induced by the
vertices in Vi =

⋃
j6i Xj.

Our dynamic programming algorithms work bottom–up in the tree-decomposition,
i.e., from the start nodes of T to the root r. For each i∈ I we consider a set of
partitions of Gi.

Let P be a partition of Gi. Let H be the graph obtained from Gi by the following
steps:

• remove all vertices in sets S ∈P such that G[S] is a cycle,
• remove all vertices in sets S ∈P such that the path G[S] has no endpoint in Xi,
• shrink all edges {x; y} with 〈x〉 = 〈y〉 and {x; y} ∩ Xi = ∅.

The characteristic of P is a triple (s; H;M) where s = |P| is the size of the partition
(the number of sets in P) and M is the set of edges {x; y} of H such that 〈x〉 = 〈y〉.
More formally, let X be the set of vertices x∈Xi such that G[〈x〉] is a path with one
endpoint in Xi, and Y be a system of representatives of P− X . Then H = (X ∪ Y; F)
is the shrink graph of P + X . Note that |Y |6 |X | and |H [X ] = G[X ]. Furthermore,
H [Y ] is the shrink graph of P− X .

Example. Let Gi = (Vi; Ei) be the graph given in Fig. 9. We consider the following
partition P = {A; B; C; D} of Vi = A ∪ B ∪ C ∪ D:

A = {a1; a2; a3; a4}; C = {c1; c2; c3};
B = {b1; b2; b3; b4; b5; b6}; D = {d1; d2}

and assume Xi ={a2; b1; b3; b4; c1}. This implies X ={b1; b3; b4; c1} and we may choose
Y = {b2; b6; c3}. Hence the triple (4; H; {{b1; b2}; {b2; b3}; {b3; b4}; {b4; b6}; {c1; c3}}) is
a characteristic of P.
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The connected components of (X∪Y;M) correspond with a partition of H . Moreover,
for all x; y∈X ∪ Y we have [〈x〉; 〈y〉] �= ∅ for this partition of H if and only if this
holds for the partition of P of Gi.

For every i∈ I we deQne a preorder 6i on the set of characteristics of partitions of
Gi by (s; H;M)6i (s′; H ′; M ′) if and only if

• the sizes of the partitions fulQll s6 s′,
• H and H ′ coincide when restricted to Xi, i.e. V (H) ∩ Xi = V (H ′) ∩ Xi and E(H) ∩

(Xi
2 ) = E(H ′) ∩ (Xi

2 ),
• M and M ′ coincide when restricted to Xi, that is M ∩ (Xi

2 ) = M ′ ∩ (Xi
2 ), and

• H is isomorphic to a subgraph of H ′. More formally there is an injection 0: Y → Y ′,
where Y =V (H)\Xi and Y ′=V (H ′)\Xi, such that {x; y}∈M implies {x; 0(y)}∈M ′

and {y; z}∈E(H) implies {0(y); 0(z)}∈E(H ′) for all x∈X , y; z ∈Y .

Note that in case V (H) = V (H ′) and M = M ′ we have (s; H;M)6i (s′; H ′; M ′) if and
only if s6 s′.

3.3. Algorithm

For each i∈ I we compute a set of characteristics of Gi using the characteristics
stored for the children of i. We do not distinguish between equivalent characteristics
and store for i∈ I only the 6i-minimal characteristics.

If we compute �(G) then each item stored for i∈ I characterizes a partition P such
that S induces a path in Gi for all S ∈P. If we compute  (G) then Gi[S] is either a
cycle or a path with both endpoints in Xi for all S in the partition.

If i is a start node, then Vi = ∅ has only one partition. Hence we store the charac-
teristic (0; (∅; ∅); ∅).

Next let i be an introduce node with child j and v∈Xi \ Xj. We consider
subcases.

• {v} becomes an additional set in the partition: For each characteristic (s; H;M)
stored for j we create a characteristic (s + 1; H + v;M).

• v prolongs an existing path: For each characteristic (s; H;M) stored for j such that
v prolongs a path in the partition deQned by M and each vertex x∈Xi ∩V (H) such
that N (v) ∩ 〈x〉 = {x} we create a characteristic (s; H + v;M ∪ {{v; x}}).

• v connects two existing paths: For each characteristic (s; H;M) stored for j such
that v connects two paths in the partition deQned by M to one path and each pair of
vertices x; z ∈Xi∩V (H) such that N (v)∩〈x〉={x}; N (v)∩(z)={z} and [〈x〉; 〈z〉]=∅ we
create a characteristic (s−1; H ′; M ′), where H ′=H +v and M ′=M ∪{{x; v}; {v; z}}.
If the other endpoints of the paths induced by 〈x〉 and 〈z〉 do not belong to Xi let
H ′ = H \ (〈x〉; 〈z〉) and M ′ = M ∩ E(H ′). Note that this only applies if we compute
�(G).
Otherwise let H ′ = H + v and M ′ = M ∪ {{x; v}; {v; z}}.

• v closes a cycle (in case we compute  (G) only): For each characteristic (s; H;M)
stored for j such that v closes a path in the partition deQned by M to a cycle and
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each pair of vertices x; z ∈Xi∩V (H) such that N (v)∩{x; z} we create a characteristic
(s; H ′; M ′) where H ′ = H \ (〈x〉 ∪ 〈z〉) and M ′ = M ∩ E(H ′).

Now let i be a forget node with child j and v∈Xj\Xi. Again we distinguish between
subcases.

• v is an inner vertex of a path or cycle: For each characteristic (s; H;M) stored for j
such that v is incident with two edges {v; u}; {v; w}∈M we create the characteristic
(s; H − v;M \ {{v; u}; {v; w}}).
For each characteristic (s; H;M) stored for j such that v �∈ V (H) we keep (s; H;M).

• v is an endpoint of a path (in case we compute �(G) only): For each characteristic
(s; H;M) stored for j such that v is incident with at most one edge {v; w}∈M we
create the characteristic (s; H − v;M \ {{v; w}}).

Finally, let i be a join node with children j1 and j2. For each characteristic (s1; H1; M1)
stored for j1 and each characteristic (s2; H2; M2) stored for j2, with H–=(X–∪Y–; F–); –=
1; 2, we compute the graph H ′ = (X ′ ∪ Y1 ∪ Y2; F1 ∪ F2) if X1 = X ′ = X2. If further-
more each connected component of (V (H ′); M1 ∪ M2) is either a cycle (in case we
compute  (G)) or a path, we compute the characteristic (s′; H;M) of this graph and
s=s1−s′1 +s2−s′2 +s′ where s′– is the number of connected components of (V (H–); M–),
– = 1; 2. Note that this implies dH1 (x) + dH2 (x)6 2 for all x∈X ′. This way we com-
puted a set of characteristics (s; H;M) for node i, and we store the minimal ones among
them.

Our algorithm stops when the minimal characteristics for the root r are stored.
Observe that there is exactly one such minimal characteristic, namely (�(G); (∅; ∅); ∅)
and ( (G); (∅; ∅); ∅), respectively.

We can prove the correctness of our algorithms by induction. Therefore, it suXces to
show that for each partition P of Gi we store either the characteristic of P or another
characteristic (s; H;M) representing a better partition. Thereby better means either less
cardinality or more possible extensions at the parent node, more precisely less with
respect to 6i. We leave out the technical details here.

To bound the running time of the algorithms we consider a largest set of pairwise in-
comparable characteristics. First we observe |Xi|6 k+1 for all i∈ I because tw(G)6 k.
This implies |Y |6 |X |6 |Xi|6 k + 1 for each entry (s; H;M) with X =V (H)∩Xi and
Y = V (H) \ Xi. For each X ⊆ Xi the graph H [X ] = G[X ] is Qxed. For Qxed subsets

X ⊆ Xi and Y ⊆ Vi \ Xi exist at most 22(k+1) diSerent sets [X; Y ] and at most 2( k+1
2 )

diSerent sets [Y; Y ]. Similarly, the number of possible sets M are bounded by 2( k+1
2 )

if X and Y are given. Hence there exist at most O(2(k+4)(k+1)) pairwise incomparable
characteristics for each node i∈ I .

The costliest steps of our algorithms are for join-nodes because we have to consider
up to O(22(k+4)(k+1)) pairs of characteristics. Since I sizes O(kn) for |V | = n we can
bound the overall running time by O(22(k+4)(k+1)kn).

Theorem 5. The parameters �(G) and  (G) are computable in linear time for graphs
of bounded treewidth.
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