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Abstract: A graph is called a cograph contractionif it is obtained from a co-
graph (a graph with no induced path on four vertices) by contracting some pairwise
disjoint independent sets and then making the ‘‘contracted’’ vertices pairwise
adjacent. Cograph contractions are perfect and generalize cographs and split
graphs. This article gives a good characterization of cograph contractions, solving a
problem posed by M. Hujter and Zs. Tuza. c© 1999 John Wiley & Sons, Inc. J Graph Theory 30:

309–318, 1999
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1. INTRODUCTION

In [2], complement reducible graphs, also calledcographs, are defined recursively
as follows:

(i) A single vertex graph is a cograph.
(ii) If G1 andG2 are two (disjoint) cographs, then so is their unionG1 ∪ G2.

(iii) If G is a cograph, then so is its complementḠ.

Cographs were investigated by a number of researchers (see [2], and the references
given therein); it is well known that cographs are exactly those graphs having no
chordless path on four vertices, also calledP4-free graphs.

c© 1999 John Wiley & Sons, Inc. CCC 0364-9024/99/040309-10
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Jung [9] proved that cographs are comparability graphs, hence perfect, where
a graphG is calledperfectif, for each induced subgraphG′ of G, the chromatic
number ofG′ equals the clique number ofG′. See [1, 5] for more information on
perfect graphs. The famous Strong Perfect Graph Conjecture due to C. Berge states
that graphs without induced cycles of odd length at least five and their complements,
calledBerge graphs, are perfect. This conjecture is still open, and one of the main
attempts to prove the conjecture consists of finding larger and larger classes of
perfect Berge graphs.

In their recent study on precoloring extensions, Hujter and Tuza [8] obtained a
method for generating a larger class of perfect graphs from a suitable one as follows.
Let H be a graph and letS1, . . . , St (t ≥ 1) be some mutually disjoint, nonempty
independent sets inH. The graphH∗ is obtained fromH by replacingS1, . . . , St

by new verticesq1, . . . , qt and joiningqi (1 ≤ i ≤ t) to qj (j 6= i), and also joining
qi to all vertices inV (H) − (S1 ∪ · · · ∪ St), which were adjacent to at least one
vertex inSi (see Fig. 1). Notice that, in caset = 1 andS1 consisting of exactly
one vertex, the contraction does not change the graph. Hujter and Tuza then proved
that if H is perfect and satisfies additional conditions (in terms of precoloring
extension), thenH∗ is a perfect graph. As they noted, their most interesting result
in generating perfect graphs in this way is the case whenH is a cograph. In this
case, no additional condition onH is required: IfH is a cograph, thenH∗ is perfect.

A graphG is called acograph contraction, if there exists a cographH and some
pairwise disjoint independent sets inH for which G = H∗ holds (see Fig. 1).
With this notion, the result of Hujter and Tuza states that cograph contractions are
perfect. Clearly, all cographs are cograph contractions and, as the main theorem
(Theorem 3.1) will imply, all split graphs are also cograph contractions. In [8] they
posed the characterization problem of cograph contractions. This article solves this
problem and is organized as follows. Section 2 presents two necessary conditions
for cograph contractions. These conditions imply that cograph contractions are
weakly triangulated graphs, hence perfect, improving Hujter and Tuza’s result.
Sections 3, 4, and 5 deal with the characterization and its proof. Our characterization
leads to a polynomial reduction for the recognition problem of cograph contractions
to the problem 2-SAT. Thus, cograph contractions can be recognized in polynomial
time. Section 6 contains further discussions.

All graphs considered are finite, undirected, and have no loops or multiple edges.
For a vertexv of a graphG, NG(v) denotes the set of all vertices inG adjacent to

FIGURE 1. G = (H1)∗ = (H2)∗. Since H2 is a cograph, G is a cograph contraction.



COGRAPH CONTRACTIONS 311

v. For a setA of vertices, setNG(A) = ∪a∈ANG(a) − A. When there can arise
no confusion, we simply writeN(v) for NG(v) andN(A) for NG(A). We often
write Pm = x1 · · ·xm andCm = x1 · · ·xmx1 for the induced path on vertices
x1, . . . , xm with edgesxixi+1 (1 ≤ i < m), respectively, the induced cycle on
verticesx1, . . . , xm with edgesx1xm, xixi+1 (1 ≤ i < m). Theend-pointsof that
Pm arex1 andxm, and themid-pointsare the verticesxi, i 6= 1, m. Themid-points
in Pm, the complement ofPm, are the end-points ofPm. The following facts are
clear and will be used in the sequel without reference:

• In a connected cograph, two nonadjacent vertices have a common neighbor.
• All induced subgraphs of a cograph contraction are also cograph contractions.

2. NECESSARY CONDITIONS

In this section,H denotes a cograph andS1, . . . , St are pairwise disjoint, nonempty
independent sets inH. Let q1, . . . , qt be the vertices inG = H∗ corresponding to
the setsS1, . . . , St, respectively. By definition,q1, . . . , qt induce a cliqueQ in H∗.
The first condition is as follows.

P 4-Condition. Each inducedP4 in G has at least one mid-point inQ.

Proof. SinceG − Q = H − (S1 ∪ · · · ∪ St), and the latter is a cograph,G − Q
has no (induced)P4. So everyP4 of G must meetQ. If the P4 = abcd has an
end-point inQ, saya = qi for some1 ≤ i ≤ t, thenc andd cannot belong to the
cliqueQ. Thus,b must belong toQ, otherwisesbcd would be an inducedP4 in H
for somes ∈ Si.

The next condition is less obvious.

P 5-Condition. Each inducedP5 in G has both mid-points inQ.

Proof. Consider theP5 = ({u, v, w, x, y}, {uv, vw, wx, xy, yu, vx}) in G.
Thus,v andx are the mid-points of theP5. By theP4-Condition, at least one ofx, y
and at least one ofu, v must be inQ. Moreover,x ∈ Q if and only if v ∈ Q, and
u ∈ Q if and only if y ∈ Q. Hence, we are done ifx ∈ Q. We will see that the case
u, y ∈ Q is impossible. For ifu = qi, y = qj , thenv, w, x ∈ H − (S1 ∪ · · · ∪ St),
and there exist somesi ∈ Si, sj ∈ Sj such that eithersivxsj (if sisj 6∈ E(H)) or
wvsisj (otherwise) is an inducedP4 in H. In each case, we get a contradiction
becauseH is a cograph.

Graphs without inducedC` andC` (` ≥ 5) are calledweakly triangulated. In
[6] it is shown that weakly triangulated graphs are perfect.

Corollary 2.1. Cograph contractions are weakly triangulated graphs, hence
perfect.

Proof. The cyclesC`’s (` ≥ 5) do not have any clique satisfying theP4-
Condition. The graphsP6 and C6 do not have any clique satisfying theP5-
Condition. Hence, cograph contractions do not have anyC`, C` (` ≥ 5) as an
induced subgraph. Therefore, they are weakly triangulated.
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3. CHARACTERIZATION

The main result of this article is as follows.

Theorem 3.1. A graph is a cograph contraction if and only if it has a clique
satisfying theP4-Condition and theP5-Condition.
This characterization yields a polynomial time recognition algorithm for cograph
contractions. By the theorem, recognizing cograph contractions means deciding
whether a given graph contains a clique satisfying theP4- and theP5-Conditions.
The latter can be done in polynomial time using an idea in [7]. For a given graph
G, we create an instance of 2-SAT as follows:

• The boolean variables are the vertices ofG,
• for all nonadjacent verticesa, b of G, (ā∨ b̄) is a clause, thenon-edge-clause

for a, b,
• for all P4 of G having midpointsa andb, (a ∨ b) is a clause, theP4-clause

for thatP4,
• for all P5 of G having midpointsa andb, (a ∨ a) and(b ∨ b) are two clauses,

theP5-clausesfor thatP5.

Our 2-SAT boolean expression is the product of all non-edge-clauses, allP4-
clauses, and allP5-clauses. Since the total number ofP4s, P5s, and pairs of
nonadjacent vertices inG is bounded byO(n5) (n is the number of vertices ofG),
the above reduction can be obtained in polynomial time. Now, it is easy to see that
G has a clique satisfying theP4- and theP5-Conditions if and only if our 2-SAT
instance is satisfiable. Moreover, the true vertices in a satisfying assignment form a
‘‘good’’ clique in G. Since 2-SAT belongs toP (see, for example, [3, 4]), cograph
contractions can be recognized in polynomial time.

Our proof of the theorem, however, is constructive. Given a graphG with a
clique Q satisfying theP4- and P5-Conditions, we will construct, efficiently, a
cographH together with|Q| pairwise disjoint independent setsS1, . . . , S|Q|, of H
such thatG = H∗, with respect to these independent setsSi’s.

4. CONSTRUCTION

We are given a graphG together with a cliqueQ = {q1, . . . , qt} that satisfies the
P4- and theP5-Conditions inG. LetR be the setG − N(q1) − {q1}. We partition
the set of the neighbors ofq1 outsideQ into two disjoint subsetsA andB as follows.

A = {x:x ∈ N(q1) − Q adjacent to no vertex inR},

B = {y: y ∈ N(q1) − Q adjacent to some vertex inR}.

Thus,N(q1) − Q = A ∪ B. By definition ofB, there exist a (smallest) numberk
and verticesr1, . . . , rk in R such thatB ⊆ N(r1) ∪ · · · ∪ N(rk). By setting

Bi := B ∩ N(ri),
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we get

B = B1 ∪ · · · ∪ Bk.

Notice that, by the minimality ofk, none of theBi is properly contained in another.
We now replace the vertexq1 of G by the independent set (of new vertices)

S1 = {s1, . . . , sk} ∪ {sA:A is a component ofA}, if A or B is nonempty,

S1 = {q1} otherwise.

SetQ′ = Q − {q1}. The edges betweenS1 and vertices inN(q1) are defined by
the following rules.

Rule 1. For each1 ≤ i ≤ k, si is adjacent to all vertices inBi and to all vertices
in N(ri) ∩ Q′.

Rule 2. For each componentA of A, sA is adjacent to all vertices inA and to all
vertices inN(A) ∩ (B ∪ Q′).
The construction is illustrated in Fig. 2. LetG′ denote the graph obtained; clearly,
G′ can be constructed in polynomial time.

In the next section we will show the following.

Reduction Lemma. In G′, the cliqueQ′ satisfies theP4-Condition and the
P5-Condition. Moreover, G = (G′)∗ with respect to the independent setsS1,
{q2}, . . . , {qt}.

From the Reduction Lemma, Theorem 3.1 follows by repeating this construction
for G := G′ andQ := Q′ until all verticesqi of Q are replaced by the independent

FIGURE 2. The construction.
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setsSi. Obviously, the final graphH is P4-free andH∗ = G with respect to the
independent setsS1, . . . , St.

We now give some key observations on the construction that will be helpful in
proving the Reduction Lemma. The first one is quite clear.

Observation 4.1. For all componentsA of A, all vertices inA have exactly
one neighbor inS1, namelysA. In particular, two vertices inA have a common
neighbor inS1 if and only if they belong to the same component ofA.
The next observations are less clear. In the proofs, we use the following term: A
badP4 (a badP5) in G does not have a mid-point (respectively, both mid-points)
in Q. Of course, there is no badP4 and no badP5 in G.

Observation 4.2. Letx andy be nonadjacent vertices inN(q1) having a common
neighbor inR. If y 6∈ Q′, then every vertex inR∪S1 adjacent toy is also adjacent
to x.

Proof. Let y 6∈ Q′ and letr be a common neighbor ofx and y in R. As-
sume that a vertexr′ ∈ R is adjacent toy but not tox. Thenxryr′ is a bad
P4 in G (if rr′ is not an edge), or elser, r′, x, y, andq1 induce a badP5 in G.
Thus, we have shown that all vertices inR adjacent toy are also adjacent tox.
Considering theri, this means by construction rule 1 that allsi (1 ≤ i ≤ k), adja-
cent toy, are also adjacent tox. To complete the proof, consider a vertexsA in S
adjacent toy. Theny ∈ N(A) ∩ B. If sA is adjacent tox, we are done. Therefore,
assume thatsA andx are nonadjacent. By construction rule 2,x 6∈ A ∪ N(A).
Now leta ∈ A be a neighbor ofy. By definition ofA, ra is not an edge anda 6∈ Q′.
As x 6∈ A ∪ N(A), xa is also not an edge. But thenxrya is a badP4 in G. This
contradiction completes the proof of Observation 4.2.

Observation 4.3. LetA be a component ofA, and letx, y ∈ A ∪ N(A) be two
nonadjacent vertices. Then there is a common neighbor ofx andy in A.

Proof. Sincex andy are nonadjacent, at least one of them does not belong to
Q′, y 6∈ Q′, say. Letax ∈ A be a neighbor ofx. We may assume thatax andy are
nonadjacent, otherwise we are done. Now,A ∪ {y} induces a connected cograph
(any P4 in A ∪ {y} would be a badP4 in G, becausey 6∈ Q′), there is a vertex
a ∈ A adjacent to bothax andy. If a is nonadjacent tox, thenxaxay is a badP4
in G, a contradiction. Thus,a is also adjacent tox, and the observation follows.

5. PROOF

We now are going to prove the Reduction Lemma; we will use the notation in the
previous section. Recall that the cliqueQ satisfies theP4- and theP5-Conditions
in G. The caseS1 = {q1} (that is,A = B = ∅) is trivial.

An inducedP4 in G′ is said to bebad if it has no mid-point inQ′.

Fact 5.1. Q′ satisfies theP4-Condition inG′.
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Proof. We have to show that inG′ there is no badP4. Suppose the contrary and
let P be a badP4 in G′. Note thatP ∩ S1 6= ∅; otherwise,P would be a badP4 in
G. The proof splits into two cases; in both cases, we will get a contradiction.
Case 1. P has a mid-point inS1.
Let s be the mid-point ofP in S1. Write P = xsyz. SinceP is bad inG′, y ∈
N(q1) − Q′. Furthermore, asQ′ is a clique, at most one ofx andz may be inQ′.
Subcase 1.1.s = si for some1 ≤ i ≤ k.
In this case,x andy are adjacent tori. Sincey 6∈ Q andz is nonadjacent tox,
Observation 4.2 implies thatz 6∈ R ∪ S1. Thus,z ∈ N(q1), andri is nonadjacent
to z, becausesiz is not an edge (construction rule 1). Since at most one ofx andz
lies inQ′, xriyz is a badP4 in G, a contradiction and Subcase 1.1 is settled.
Subcase 1.2.s = sA for some componentA of A.
By construction rule 2,x, y ∈ A ∪ N(A). By Observation 4.3, there exists a com-
mon neighbora ∈ A of x andy. As a ∈ A, a does not belong toQ′. Furthermore,
z cannot be adjacent toa: This follows from definition ofA if z ∈ R; if z ∈ N(q1),
it follows from construction rule 2 and the fact thatsAz is not an edge; ifz ∈ S1, it
follows from Observation 4.1. Thus,xayz is an inducedP4. Now, if z 6∈ S1, then
this P4 is bad inG, impossible; ifz ∈ S1, theny ∈ B(∩N(A)) (by construction
rule 2 and Observation 4.1). Consider a neighborr ∈ R of y. Sincezx is not an
edge, Observation 4.2 implies thatr andx are nonadjacent. But thenxayr is a bad
P4 in G. This contradiction settles Subcase 1.2, and, hence, Case 1.
Case 2. P has an end-point inS1.
Let s be an end-point ofP in S1. Write P = xyzs. SinceP is bad inG′, only the
vertexx of P may be inQ′. By Case 1,z ∈ N(q1) − Q′, y ∈ R ∪ (N(q1) − Q′).
Actually,

y ∈ N(q1) − Q′.

For if y ∈ R, thenx must belong toN(q1) (elseP would be a badP4 in G). Then
by Observation 4.2,sx would be an edge. We now discuss two cases according to
whetherx belongs toS1 or not.
Subcase 2.1.x 6∈ S1.
Suppose first thats = sA for someA. As sAy is not an edge,z ∈ N(A) ∩ B.
Let a ∈ A be a neighbor ofz. As sAy is not an edge,a is not adjacent toy. If
x ∈ R, then by definition ofA, a is not adjacent tox. If x ∈ N(q1), then, since
sAx is not an edge,a is also not adjacent tox. In any case,xyza is a badP4 in G,
a contradiction. Second, lets = si for some1 ≤ i ≤ k. Thenriy is not an edge,
becausesiy is not (construction rule 1).ri is also not adjacent tox: If x ∈ N(q1),
then the edgerix together with Observation 4.2 would imply thatsix is an edge;
if x ∈ R, then the edgerix would imply thatq1zrix is a badP4 in G. But then
rizyx is a bad inducedP4 in G. Subcase 2.1 is settled.
Subcase 2.2.x ∈ S1.
If s = sA for someA, thenz ∈ N(A), becausesAy is not an edge. Leta ∈ A be
a neighbor ofz. a is not adjacent toy, becausesAy is not an edge.a is also not
adjacent tox by Observation 4.1. Thus,xyza is aP4 having exactly one end-point
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in S1; we obtain Subcase 2.1 again. Therefore, we may assume thats = si, and
by symmetry,x = sj for somej 6= i. Now, ri is not adjacent toy andrj is not
adjacent toz. Hence,rizyrj is a badP4 in G (if rirj is not an edge), orq1zrirj is a
badP4 in G (otherwise). In any case, we get a contradiction. This settles Subcase
2.2, hence Case 2. Thus, the proof of Fact 5.1 is completed.

Fact 5.2. Q′ satisfies theP5-Condition inG′.

Proof. In G′, consider aP5 consisting of the triangleuvwu and the 4-cycle
vwxyv; thus,v andw are the mid-points of thatP5. Applying Fact 5.1 for theP4’s
uvyx anduwxy, bothv andw, or bothx andy must belong toQ′. In the first
case, we are done. Assume thatx andy belong toQ′. Then{u, v, w} ∩ S1 6= ∅;
otherwise, theP5 considered is bad inG. SinceS1 is independent, exactly one of
u, v, w belongs toS1. Note thatu, v, w are vertices outsideQ′.
Case 1. u ∈ S1.
If u = si for somei, thenri is not adjacent tox andy, becausesix andsiy are
nonedges. Thus,ri, v, w, x, andy induce a badP5 in G, a contradiction. Let
u = sA for someA. Thenv, w ∈ N(A) andx, y 6∈ N(A). Let a ∈ A be a
neighbor ofv. If a is not adjacent tow, thenxwva is a badP4 in G; if aw is
an edge, thena, v, w, x, andy induce a badP5 in G. These contradictions settle
Case 1.

The casesv ∈ S1 orw ∈ S1 remain. By symmetry we only consider the first one.
Case 2. v ∈ S1.
If v = si for somei, thenri is not adjacent tox, becausesix is not an edge.
Thereforeu, w, ri, x, andy induce a badP5 in G, a contradiction. Letv = sA for
someA. Thenw, y ∈ N(A), x 6∈ N(A). By Observation 4.3, there is a vertex
a ∈ A adjacent to bothw andy. Note thata is not adjacent tox, becausex 6∈ N(A).
Now, as in Case 1, eitheryawu is a badP4 in G (if au 6∈ E(G)), or elsea, u, w, x,
andy induce a badP5 in G. This contradiction settles Case 2, and Fact 5.2 is
completely proved.

Moreover, it is clear by construction rules 1 and 2 that(G′)∗ = G with re-
spect to the independent setsS1, {q2}, {q3}, . . . , {qt}. The Reduction Lemma
follows.

6. CONCLUDING REMARKS

As we have seen in Section 2, cograph contractions are weakly triangulated. So it is
natural to ask which triangulated graphs are cograph contractions. By Theorem 3.1,
a triangulated graph is a cograph contraction if and only if it has a clique meeting
every inducedP4 in at least one mid-point. Triangulated cograph contractions can
be recognized efficiently, without reduction to 2-SAT, as follows. Each triangulated
graphG has at most|V (G)| maximal cliques, and they can be listed in linear time
(see for example [5]). TheP4-Condition will then be checked for each maximal
clique.
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Our construction in Section 4 yields in most cases adisconnectedcographH.
Therefore, it would be interesting to know those cograph contractions obtained
from a connected cograph. In what follows, we call a graphG aconnected-cograph
contractionif G = H∗ for some connected cographH. Notice that, in this case, it
is still possible thatG is also obtained from a disconnected cograph as well.

The discussion below relies on thejoin operation of two graphs. LetX andY
be two disjoint graphs. The joinX + Y is obtained fromX andY by adding all
possible edges between vertices inX and vertices inY . As the reader may verify,
P4 + P4 is an example of a connected-cograph contraction, whileP4 is not.

The following fact can be seen directly from the definition of the join- and the
∗-operations.

Observation 6.1. LetH1, H2 be two disjoint graphs, and letSi
1, . . . , S

i
ti be some

pairwise disjoint independent sets inHi (i = 1, 2). ThenS1
1 , . . . , S1

t1 , S
2
1 , . . . , S2

t2
are pairwise disjoint independent sets ofH1 +H2. Moreover, with respect to these
independent sets, (H1 + H2)∗ = H∗

1 + H∗
2 .

Our characterization of connected-cograph contractions is somewhat interesting
in connection to the join-decomposition of connected cographs (see, for example,
[2, 10].)

Theorem 6.1. A graph is a connected-cograph contraction if and only if it is the
join of two cograph contractions.

Proof. First, letG = H∗ for some connected cographH and some independent
setsS1, . . . , St in H. In [10] it is shown thatH = H1 + H2 for some cographs
H1, H2. Then, for allS ∈ {S1, . . . , St}, S ⊆ H1 or elseS ⊆ H2, but not both.
Therefore, by Observation 6.1,G = H∗ = (H1 + H2)∗ = H∗

1 + H∗
2 ; with respect

to those independent setsS belonging toHi (i = 1, 2).
Second, letG = G1 + G2 with two cograph contractionsG1, G2. Consider

the (disjoint) cographsHi together with independent setsSi
1, . . . , S

i
ti (i = 1, 2),

for which Gi = H∗
i . SetH = H1 + H2;H is clearly a connected cograph. By

Observation 6.1,H∗ = (H1 + H2)∗ = H∗
1 + H∗

2 = G1 + G2 = G.
As we have seen byP4 + P4, an induced subgraph of a connected-cograph

contraction need not be a connected-cograph contraction. In contrast, the class
of cograph contractions is closed under taking induced subgraphs (as noted at the
end of the introduction). Thus, there is a characterization of this class in terms of
forbidden induced subgraphs; see the proof of Corollary 2.1 for some forbidden
configurations. We are not able to find such a characterization and leave this as an
open problem.
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