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Abstract: A graph is called a cograph contractionf it is obtained from a co-
graph (a graph with no induced path on four vertices) by contracting some pairwise
disjoint independent sets and then making the “contracted” vertices pairwise
adjacent. Cograph contractions are perfect and generalize cographs and split
graphs. This article gives a good characterization of cograph contractions, solving a
problem posed by M. Hujter and Zs. Tuza. © 1999 John Wiley & Sons, Inc. J Graph Theory 30:
309-318, 1999
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1. INTRODUCTION

In [2], complement reducible grapjalso calleccographs are defined recursively
as follows:

(i) A single vertex graph is a cograph.
(i) If G andGs are two (disjoint) cographs, then so is their un@nuU Go.
(i) If G is acograph, then so is its complemént
Cographs were investigated by a number of researchers (see [2], and the references

given therein); it is well known that cographs are exactly those graphs having no
chordless path on four vertices, also calledfree graphs

© 1999 John Wiley & Sons, Inc. CCC 0364-9024/99/040309-10
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Jung [9] proved that cographs are comparability graphs, hence perfect, where
a graphG is calledperfectif, for each induced subgrapi’ of GG, the chromatic
number ofG’ equals the clique number 6f. See [1, 5] for more information on
perfect graphs. The famous Strong Perfect Graph Conjecture due to C. Berge states
that graphs withoutinduced cycles of odd length at least five and their complements,
calledBerge graphsare perfect. This conjecture is still open, and one of the main
attempts to prove the conjecture consists of finding larger and larger classes of
perfect Berge graphs.

In their recent study on precoloring extensions, Hujter and Tuza [8] obtained a
method for generating a larger class of perfect graphs from a suitable one as follows.
Let H be a graph and lef, ..., S; (t > 1) be some mutually disjoint, nonempty
independent sets il. The graphH™ is obtained fromH by replacingSi, ..., S;
by new vertices, . . ., ¢: and joiningg; (1 < i < t)tog; (j # i), and also joining
¢; to all vertices inV (H) — (S; U --- U S), which were adjacent to at least one
vertex in.S; (see Fig. 1). Notice that, in cage= 1 and.S; consisting of exactly
one vertex, the contraction does not change the graph. Hujter and Tuza then proved
that if H is perfect and satisfies additional conditions (in terms of precoloring
extension), therll* is a perfect graph. As they noted, their most interesting result
in generating perfect graphs in this way is the case wtide a cograph. In this
case, no additional condition diiis required: IfH is a cograph, theH * is perfect.

A graphd is called acograph contractionif there exists a cograpH and some
pairwise disjoint independent sets ki for which G = H* holds (see Fig. 1).

With this notion, the result of Hujter and Tuza states that cograph contractions are
perfect. Clearly, all cographs are cograph contractions and, as the main theorem
(Theorem 3.1) will imply, all split graphs are also cograph contractions. In [8] they
posed the characterization problem of cograph contractions. This article solves this
problem and is organized as follows. Section 2 presents two necessary conditions
for cograph contractions. These conditions imply that cograph contractions are
weakly triangulated graphs, hence perfect, improving Hujter and Tuza’s result.
Sections 3, 4, and 5 deal with the characterization and its proof. Our characterization
leads to a polynomial reduction for the recognition problem of cograph contractions
to the problem 2-SAT. Thus, cograph contractions can be recognized in polynomial
time. Section 6 contains further discussions.

All graphs considered are finite, undirected, and have no loops or multiple edges.
For a vertexv of a graphGG, N¢(v) denotes the set of all vertices@adjacent to
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FIGURE 1. G = (H1)* = (H2)*. Since H» is a cograph, G is a cograph contraction.
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v. For a setA of vertices, selNg(A) = UseaNg(a) — A. When there can arise
no confusion, we simply writéV (v) for Ng(v) and N (A) for Ng(A). We often
write P, = x1 -z, andC,, = x1---z,,x1 for the induced path on vertices
x1,..., T, With edgesr;z; 11 (1 < i < m), respectively, the induced cycle on
verticesry, . . ., ¢, With edgese z,,, z;x;41 (1 < i < m). Theend-pointof that
P,, arex; andz,,,, and themid-pointsare the vertices;, i # 1, m. Themid-points
in P,,, the complement of,,,, are the end-points a?,,. The following facts are
clear and will be used in the sequel without reference:

e In aconnected cograph, two nonadjacent vertices have a common neighbor.
e Allinduced subgraphs of a cograph contraction are also cograph contractions.

2. NECESSARY CONDITIONS

Inthis section H denotes a cograph asy, . . . , .S; are pairwise disjoint, nonempty
independent sets if. Letqy, ..., g be the vertices il = H* corresponding to
the setsSy, . .., S, respectively. By definitionyy, . .., ¢; induce a clique) in H*.
The first condition is as follows.

P,4-Condition. Each induced’, in G has at least one mid-point @.

Proof. SinceG —@Q = H — (S1U---US}), and the latter is a cograpfy, — @
has no (inducedp,. So everyP, of G must meet). If the P, = abed has an
end-point inQ, saya = ¢; for somel < i < t, thenc andd cannot belong to the
cligue@. Thus,b must belong ta), otherwisesbcd would be an induced®, in H
for somes € S;. n

The next condition is less obvious.

P5-Condition. Each induced’s in G has both mid-points i).

Proof. Consider thePs = ({u, v, w, x, y}, {uv, vw, wx, 2y, yu, vz}) in G.
Thus,v andz are the mid-points of th&;. By the P;-Condition, at least one af, y
and at least one af, v must be inQ. Moreover,xz € @ if and only ifv € @, and
u € Qifandonlyify € Q. Hence, we are doneif € Q. We will see that the case
u,y € @ isimpossible. Forifs = ¢;,y = ¢;, thenv,w,x € H — (S1 U---USy),
and there exist somg € S;, s; € S; such that eithes;vxs; (if s;s; € E(H)) or
wvs;s; (otherwise) is an induce®, in H. In each case, we get a contradiction
becausdd is a cograph. n

Graphs without induced’;, andC, (¢ > 5) are calledveakly triangulated In
[6] it is shown that weakly triangulated graphs are perfect.

Corollary 2.1.  Cograph contractions are weakly triangulated graphence
perfect

Proof. The cyclesCy’'s (¢ > 5) do not have any clique satisfying the,-
Condition. The graph$’ and Cs do not have any clique satisfying the;-
Condition. Hence, cograph contractions do not have@ny’, (¢ > 5) as an
induced subgraph. Therefore, they are weakly triangulated. x




312 JOURNAL OF GRAPH THEORY

3. CHARACTERIZATION

The main result of this article is as follows.

Theorem 3.1. A graph is a cograph contraction if and only if it has a clique
satisfying theP;-Condition and thePs-Condition

This characterization yields a polynomial time recognition algorithm for cograph
contractions. By the theorem, recognizing cograph contractions means deciding
whether a given graph contains a clique satisfyingfpeand thePs-Conditions.

The latter can be done in polynomial time using an idea in [7]. For a given graph
G, we create an instance of 2-SAT as follows:

e The boolean variables are the verticesof

e forall nonadjacent vertices b of G, (a Vv b) is a clause, thaon-edge-clause
for a, b,

e for all P4 of G having midpoints: andb, (a V b) is a clause, thé’;-clause
for that Py,

e for all P; of G having midpoints: andb, (a vV ) and(b v b) are two clauses,
the Ps-clausedor that Ps.

Our 2-SAT boolean expression is the product of all non-edge-clauseR;-all
clauses, and alPs-clauses. Since the total number Bfs, Pss, and pairs of
nonadjacent vertices ifi is bounded byO(n°) (n is the number of vertices af),
the above reduction can be obtained in polynomial time. Now, it is easy to see that
G has a clique satisfying thB,- and thePs-Conditions if and only if our 2-SAT
instance is satisfiable. Moreover, the true vertices in a satisfying assignment form a
“good” clique in G. Since 2-SAT belongs tB (see, for example, [3, 4]), cograph
contractions can be recognized in polynomial time.

Our proof of the theorem, however, is constructive. Given a g@phith a
clique Q satisfying theP;- and P5-Conditions, we will construct, efficiently, a
cographH together with Q| pairwise disjoint independent sefs, . . ., S|, of H
such thatz = H*, with respect to these independent sgts.

4. CONSTRUCTION

We are given a grapty together with a cliqué) = {q1, ..., ¢} that satisfies the
P,- and theP;-Conditions inG. Let R be the setG — N(q1) — {q1}. We partition
the set of the neighbors ¢f outside into two disjoint subsetgl ands as follows.

A= {z:xz € N(q1) — Q adjacent to no vertex iie},

B={y:y € N(q1) — Q adjacent to some vertex R}.

Thus,N(q1) — Q@ = AU B. By definition of 3, there exist a (smallest) number
and vertices, ..., r; in R suchthat3 C N(r;) U---U N(rg). By setting

Bi IZBQN(TZ‘),
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we get
B=ByU---UBjy.

Notice that, by the minimality of, none of theB; is properly contained in another.
We now replace the vertex of G by the independent set (of new vertices)

S1 = {s1,...,sk} U{sa: Aisacomponent ofd}, if A or B is nonempty
S1 = {q} otherwise

Set@’ = Q — {¢1}. The edges betwee$y and vertices inV(q;) are defined by
the following rules.

Rule 1. Foreachl < i < k, s; is adjacent to all vertices iB; and to all vertices
in N(TZ) N Ql.

Rule 2. For each componet of A, s, is adjacent to all vertices id and to all
vertices inN (A) N (BU Q).
The construction is illustrated in Fig. 2. Lét denote the graph obtained; clearly,
G’ can be constructed in polynomial time.

In the next section we will show the following.

Reduction Lemma. In G’, the clique @’ satisfies theP;-Condition and the
P5-Condition Moreover G = (G')* with respect to the independent seéts

{Q2}7 crt {Qt}'

From the Reduction Lemma, Theorem 3.1 follows by repeating this construction

for G := G' andQ := Q' until all verticesy; of Q are replaced by the independent

5 q3 § ;
‘1'1 q2

The graph G

s S
The graph (G')’ The cograph H

FIGURE 2. The construction.
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setsS;. Obviously, the final grapltif is P,-free andH* = G with respect to the
independent setS;, . .., .S;.

We now give some key observations on the construction that will be helpful in
proving the Reduction Lemma. The first one is quite clear.

Observation 4.1. For all componentsAd of A, all vertices in A have exactly

one neighbor inSy, namelys 4. In particular, two vertices in4 have a common
neighbor inS; if and only if they belong to the same componentiof n

The next observations are less clear. In the proofs, we use the following term: A
bad P, (abad Ps) in G does not have a mid-point (respectively, both mid-points)
in Q. Of course, there is no bad, and no badPs in G.

Observation 4.2. Letx andy be nonadjacentvertices ¥ (q; ) havingacommon
neighbor inR. If y ¢ @', then every vertex iR U S; adjacent toy is also adjacent
tox.

Proof. Lety ¢ @' and letr be a common neighbor of andy in R. As-
sume that a vertex’ € R is adjacent toy but not toxz. Thenzryr’ is a bad
P, in G (if »' is not an edge), or elser’, z,y, andq; induce a badP; in G.
Thus, we have shown that all vertices fihadjacent toy are also adjacent to.
Considering the;, this means by construction rule 1 thatgll(1 < i < k), adja-
cent toy, are also adjacent to. To complete the proof, consider a vertexin S
adjacenttg,. Theny € N(A) N B. If s4 is adjacent ta:;, we are done. Therefore,
assume that 4 andz are nonadjacent. By construction rulea2¢g A U N(A).
Now leta € A be aneighbor of. By definition of A, ra is notan edge and ¢ Q'.
Asz ¢ AU N(A),za is also not an edge. But themya is a badP, in G. This
contradiction completes the proof of Observation 4.2. n

Observation 4.3. Let A be a component ofl, and letx,y € AU N(A) be two
nonadjacent verticesThen there is a common neighboroéndy in A.

Proof. Sincex andy are nonadjacent, at least one of them does not belong to
Q',y & Q', say. Leta, € A be aneighbor of. We may assume that, andy are
nonadjacent, otherwise we are done. Naw, {y} induces a connected cograph
(any Py in A U {y} would be a bad?, in G, because; ¢ Q’), there is a vertex
a € A adjacent to botla, andy. If a is nonadjacent ta, thenza,ay is a badP,
in GG, a contradiction. Thus, is also adjacent t@, and the observation followsg

5. PROOF

We now are going to prove the Reduction Lemma; we will use the notation in the
previous section. Recall that the clig@esatisfies theP,;- and thePs-Conditions
in G. The caseS; = {q:1} (thatis, A = B = () is trivial.

An inducedP; in G’ is said to bebadif it has no mid-point inQ’.

Fact5.1. (' satisfies theP;-Condition inG’.
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Proof. We have to show that i&” there is no bad’;,. Suppose the contrary and
let P be a badP, in G’. Note thatP N S; # (; otherwise,P would be a bad’; in
G. The proof splits into two cases; in both cases, we will get a contradiction.
Case 1. P has a mid-point irf.

Let s be the mid-point ofP in S;. Write P = zsyz. SinceP is bad inG’,y €
N(q1) — @'. Furthermore, ag’ is a clique, at most one afandz may be inQ)’.
Subcase 1.1.s = s; for somel < i < k.

In this caseyx andy are adjacent te;. Sincey ¢ Q andz is nonadjacent ta;,
Observation 4.2 implies that¢ R U S;. Thus,z € N(q1), andr; is nonadjacent
to z, because; z is not an edge (construction rule 1). Since at most oneanfd
liesinQ', zr;yz is a badP, in G, a contradiction and Subcase 1.1 is settled.
Subcase 1.2.s = s, for some componem of A.

By construction rule 23,y € AU N(A). By Observation 4.3, there exists a com-
mon neighbor € A of x andy. Asa € A, a does not belong tQ’. Furthermore,
z cannot be adjacentto This follows from definition ofA if z € R;if z € N(¢1),
it follows from construction rule 2 and the fact thatz is not an edge; if € Sy, it
follows from Observation 4.1. Thusayz is an inducedP;. Now, if z £ S1, then
this P, is bad inG, impossible; ifz € S, theny € B(NN(A)) (by construction
rule 2 and Observation 4.1). Consider a neighbar R of y. Sincezx is not an
edge, Observation 4.2 implies thaandz are nonadjacent. But themyr is a bad
P, in G. This contradiction settles Subcase 1.2, and, hence, Case 1.

Case 2. P has an end-point if;.

Let s be an end-point oP in S;. Write P = xyzs. SinceP is bad inG’, only the
vertexxz of P may be inQ’. By Case 1z € N(¢1) — Q',y € RU (N(q1) — Q).
Actually,

yeN(q)—Q'.

Forif y € R, thenx must belong taV(¢;) (elseP would be a bad’, in G). Then
by Observation 4.25x would be an edge. We now discuss two cases according to
whetherz belongs taS; or not.

Subcase 2.1.x £ 5.

Suppose first that = s4 for someA. As s4y is not an edge; € N(A) N B.
Leta € A be a neighbor ot. As sy is not an edgeq is not adjacent tg. If

x € R, then by definition ofA, a is not adjacent ta.. If x € N(q1), then, since
sax is not an edgey is also not adjacent te. In any caseryza is a badP;, in G,

a contradiction. Second, let= s; for somel < i < k. Thenr;y is not an edge,
because;y is not (construction rule 1):; is also not adjacent te: If x € N(q1),
then the edge;x together with Observation 4.2 would imply that: is an edge;
if z € R, then the edge;z would imply thatg; zr;z is a badP, in G. But then
r;zyz is a bad induced; in G. Subcase 2.1 is settled.

Subcase 2.2.x € 5;.

If s = s4 for someA, thenz € N(A), because 4y is not an edge. Let € A be
a neighbor ofz. a is not adjacent tg, because 4y is not an edgea is also not
adjacent tac by Observation 4.1. Thusyza is a P, having exactly one end-point
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in S1; we obtain Subcase 2.1 again. Therefore, we may assume that;, and
by symmetryx = s; for somej # i. Now, r; is not adjacent tg andr; is not
adjacentta. Hencey;zyr; is abadP, in G (if r;r; is not an edge), oy, zr;r; is a
bad P, in G (otherwise). In any case, we get a contradiction. This settles Subcase
2.2, hence Case 2. Thus, the proof of Fact 5.1 is completed. 1

Fact5.2. (' satisfies thePs-Condition inG’.

Proof. In G’, consider aP; consisting of the trianglewwwu and the 4-cycle
vwzyv; thus,v andw are the mid-points of thats. Applying Fact 5.1 for theP,’s
uwvyzr anduwzxy, bothv andw, or bothz andy must belong ta)’. In the first
case, we are done. Assume thandy belong toQ’. Then{u,v,w} NSy # (;
otherwise, thePs considered is bad ii'. SinceS; is independent, exactly one of
u, v, w belongs taS;. Note thatu, v, w are vertices outside’.

Casel. u c 5.

If uw = s; for somei, thenr; is not adjacent ta: andy, because;z ands;y are
nonedges. Thus;y,v,w,z, andy induce a badP; in G, a contradiction. Let
u = s for someA. Thenv,w € N(A) andx,y ¢ N(A). Leta € Abea
neighbor ofv. If a is not adjacent tav, thenzwwa is a badPy in G; if aw is
an edge, then, v, w, z, andy induce a badP; in G. These contradictions settle
Case 1.

The cases € S, orw € S remain. By symmetry we only consider the first one.
Case 2. v € 5.

If v = s; for somei, thenr; is not adjacent tac, becauses;z is not an edge.
Thereforeu, w, r;, z, andy induce a bad’; in G, a contradiction. Let = s 4 for
someA. Thenw,y € N(A),z ¢ N(A). By Observation 4.3, there is a vertex
a € Aadjacentto botly andy. Note that: is not adjacentta, because ¢ N(A).
Now, as in Case 1, eithgnwu is a badPy in G (if au ¢ E(G)), or elsea, u, w, ,
andy induce a badPs in G. This contradiction settles Case 2, and Fact 5.2 is
completely proved. i

Moreover, it is clear by construction rules 1 and 2 th@t)* = G with re-
spect to the independent seis, {¢2},{g¢s},...,{@}. The Reduction Lemma
follows. n

6. CONCLUDING REMARKS

As we have seenin Section 2, cograph contractions are weakly triangulated. Soitis
natural to ask which triangulated graphs are cograph contractions. By Theorem 3.1,
a triangulated graph is a cograph contraction if and only if it has a clique meeting
every induced?; in at least one mid-point. Triangulated cograph contractions can
be recognized efficiently, without reduction to 2-SAT, as follows. Each triangulated
graphG has at mostV (G)| maximal cliques, and they can be listed in linear time
(see for example [5]). Th&,-Condition will then be checked for each maximal
clique.
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Our construction in Section 4 yields in most caseistonnected¢ographH.
Therefore, it would be interesting to know those cograph contractions obtained
from a connected cograph. In what follows, we call a gr@@connected-cograph
contractionif G = H* for some connected cograph Notice that, in this case, it
is still possible that? is also obtained from a disconnected cograph as well.

The discussion below relies on tfen operation of two graphs. Let andY
be two disjoint graphs. The joiX + Y is obtained fromX andY by adding all
possible edges between verticesXirand vertices irt”. As the reader may verify,
Py + Py is an example of a connected-cograph contraction, whilis not.

The following fact can be seen directly from the definition of the join- and the
*-operations.

Observation 6.1. LetH, H, be two disjoint graphsand letS;, . . ., S; be some
pairwise disjoint independent sets#fy (i = 1,2). ThenS1,... 5} ,5%,..., 52

are pairwise disjoint independent setsif + H,. Moreover with respect to these
independent set$H, + Hs)* = Hf + H;. 1

Our characterization of connected-cograph contractions is somewhat interesting
in connection to the join-decomposition of connected cographs (see, for example,
[2,10].)

Theorem 6.1. A graph is a connectedograph contraction if and only if itis the
join of two cograph contractions

Proof. First, letG = H* for some connected cographand some independent
setsSy, ..., S:in H. In[10] it is shown thatd = H; + H> for some cographs
H,,H,. Then, for allS € {S1,...,S5:},S C H; or elseS C H,, but not both.
Therefore, by Observation 6.&, = H* = (H, + Hs)* = H} + Hj3; with respect
to those independent seiselonging toH; (i = 1, 2).

Second, letz = G; + G4 with two cograph contraction&, Go. Consider
the (disjoint) cographg; together with independent se$$, ..., S}, (i = 1,2),
for whichG; = H. SetH = H; + H»; H is clearly a connected cograph. By
Observation 6.1H* = (H; + Hy)* = Hf + H5 = G1 + G2 = G. n

As we have seen by, + P4, an induced subgraph of a connected-cograph
contraction need not be a connected-cograph contraction. In contrast, the class
of cograph contractions is closed under taking induced subgraphs (as noted at the
end of the introduction). Thus, there is a characterization of this class in terms of
forbidden induced subgraphs; see the proof of Corollary 2.1 for some forbidden
configurations. We are not able to find such a characterization and leave this as an
open problem.
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