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Abstract

A tree t-spanner T in a graph G is a spanning tree of G such that the distance in 7" between
every pair of vertices is at most ¢ times their distance in G. The TREE #-SPANNER problem asks
whether a graph admits a tree ¢-spanner, given . We substantially strengthen the hardness result
of Cai and Corneil (SIAM J. Discrete Math. 8 (1995) 359-387) by showing that, for any ¢ > 4,
TREE ¢-SPANNER is NP-complete even on chordal graphs of diameter at most #+1 (if ¢ is even),
respectively, at most £+ 2 (if ¢ is odd). Then we point out that every chordal graph of diameter
at most ¢ — 1 (respectively, ¢ —2) admits a tree #-spanner whenever ¢ > 2 is even (respectively,
t = 3 is odd), and such a tree spanner can be constructed in linear time.

The complexity status of TREE 3-SPANNER still remains open for chordal graphs, even on the
subclass of undirected path graphs that are strongly chordal as well. For other important sub-
classes of chordal graphs, such as very strongly chordal graphs (containing all interval graphs),
1-split graphs (containing all split graphs) and chordal graphs of diameter at most 2, we are
able to decide TREE 3-SPANNER efficiently.
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1. Introduction and results

All graphs considered are connected. For two vertices in a graph G, dg(x, y) de-
notes the distance between x and y; that is, the number of edges in a shortest path
in G joining x and y. The value diam(G):= maxdg(x,y) is the diameter of the
graph G.

Let =2 be a fixed integer. A spanning tree 7 of a graph G is a tree t-spanner
of G if and only if, for every pair of vertices x,y of G, dr(x,y)<t - dg(x,y).
TREE -SPANNER is the following problem: Given a graph G, does G admit a tree
t-spanner?

There are many applications of tree spanners in different areas; especially in dis-
tributed systems and communication networks. In [1], for example, it was shown that
tree spanners can be used as models for broadcast operations; see also [25]. More-
over, tree spanners also appear in biology [2], and in [29], tree spanners were used in
approximating the bandwidth of graphs. We refer to [8,7,26,28] for more background
information on tree spanners.

In [7] Cai and Corneil gave a linear time algorithm solving TREE 2-SPANNER and
proved that TrREE #-SpannNer is NP-complete for any 1>4. A graph is chordal if it
does not contain any chordless cycle of length at least four. For a popular subclass of
chordal graph, the strongly chordal graphs, Brandstadt et al. [3] proved that, for every
t =4, TREE ¢-SPANNER is solvable in linear time. Indeed, they show that every strongly
chordal graph admits a tree 4-spanner. In contrast, one of our results is

Theorem 1. For any t>4, TREE {-SPANNER is NP-complete on chordal graphs of
diameter at most t + 1 (if t is even), respectively, of at most t + 2 (if t is odd).

Comparing with a recent result due to Papoutsakis [24], it is interesting to note that
the union of two tree z-spanners, >4, may contain chordless cycles of any length,
while, for #=3, the graph being the union of any two tree 3-spanners of a graph
may contain even chordless cycles of any length but it cannot contain any odd chord-
less cycle other than a triangle [24]. This perhaps indicates the difficulty in proving
Theorem 1 and in treating the =3 case. Indeed, our reduction from 3SAT to TREE
t-SPANNER given in Section 2 is quite involved.

Moreover, to the best of our knowledge, Theorem 1 is the first hardness result for
TREE #-SPANNER on a restricted, well-understood graph class. Notice that in [16] it is
shown that TREE #-SPANNER, £2>4, is NP-complete on planar graphs if the integer ¢ is
part of the input.

In view of the diameter constraints in Theorem 1, we note that TREE #-SPANNER
remains open on chordal graphs of diameter ¢ (¢ is even) and of diameter t — 1, ¢ or
t+1 (if ¢ is odd). For ”smaller” diameter we have

Theorem 2. For any even integer t, every chordal graph of diameter at most t — 1
admits a tree t-spanner, and such a tree spanner can be constructed in linear time.
For any odd integer t, every chordal graph of diameter at most t — 2 admits a tree
t-spanner, and such a tree spanner can be constructed in linear time.
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We were also able to show that chordal graphs of diameter at most t — 1 (¢ is odd)
admit tree z-spanners if and only if chordal graphs of diameter 2 admit tree 3-spanners.
This result is used to show that every chordal graph of diameter at most t — 1 (¢ is
odd), which is a planar graph or a k-tree, for k<3, has a tree ¢-spanner, while such
a tree spanner can be constructed in polynomial time. Note that, for any fixed ¢, there
is a 2-tree without a tree ¢-spanner [20]. So, even those kind of results are of interest.
Unfortunately, the reduction above (from arbitrary odd ¢ to t =3) is of no direct use for
general chordal graphs because not every chordal graph of diameter at most 2 admits
a tree 3-spanner. One of our theorems characterizes those chordal graphs of diameter
at most 2 that admit such spanners.

We now discuss TREE #-SPANNER on important subclasses of chordal graphs. It is
well-known that chordal graphs are exactly the intersection graphs of subtrees in a
tree [5,17,31]. Thus, intersection graphs of paths in a tree, called path graphs, form
a natural subclass of chordal graphs. TREE #-SPANNER remains unresolved even on this
natural subclass of chordal graphs.

The complexity status of TREE 3-SPANNER remains a long standing open problem.
However, it can be solved efficiently for many particular graph classes, such as cographs
and complements of bipartite graphs [6], directed path graphs [21] (hence for all
interval graphs [20,21,27]), split graphs [6,20,29], permutation graphs and regular bi-
partite graphs [22], convex bipartite graphs [29], and recently for planar graphs [16].
In [6,23,24], some properties of graphs admitting a tree 3-spanner are discussed.

On chordal graphs, however, TREE 3-SPANNER remains open even on path graphs
which are strongly chordal as well. For some important subclasses of chordal graphs
we can decide TREe 3-SpanNEr efficiently. Graphs considered in the theorem below are
defined in Sections 5 and 6.

Theorem 3. All very strongly chordal graphs and all 1-split graphs admit a tree
3-spanner, and such a tree 3-spanner can be constructed in linear time.

Theorem 4. For a given chordal graph G=(V,E) of diameter at most 2, TREE
3-SpANNER can be decided in O(|V||E|) time. Moreover, a tree 3-spanner of G, if
it exists, can be constructed within the same time bound.

Theorem 3 improves previous results on tree 3-spanners in interval graphs [20,22,27]
and on split graphs [6,20,29]. The complexity status of TREE z-SPANNER on chordal
graphs considered in this paper is summarized in Table 1 and Fig. 1.

Notations and definitions not given here may be found in any standard textbook
on graphs and algorithms. We write xy for the edge joining vertices x,y; x and y
are also called endvertices of xy. For a set C of vertices, N(C) denotes the set of
all vertices outside C adjacent to a vertex in C; N(x) stands for N({x}) and deg(x)
stands for |[N(x)|. We set d(v,C):= min{d(v,x):x € C}. The eccentricity of a vertex
v in G is the maximum distance from v to other vertices in G. The radius r(G) of G
is the minimum of all eccentricities and the diameter diam(G) of G is the maximum
of all eccentricities. A cutset of a graph is a set of vertices whose deletion disconnects
the graph. A graph is non-separable if it has no one-element cutset, and triconnected
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Table 1
The complexity status of TREE #-SPANNER on chordal graphs under
diameter constraints.

Diameter at most Complexity
t+2,t=5 odd NP-complete
t+1, t=4 even NP-complete
t+ 1, t=3 odd ?
t, t=3 ?
t—1,t=5 odd ?
t—1,t=3 polynomial time
t—1, t>=2 even linear time
t—2,t>3 odd linear time
hordal
o NP-c (t > 4)
t=3: open
path t> 3. open
strongly
chordal diameter < 3 .
chordal Z-split
tree 4-spanner
stror;]gly admissible
at
P t=3: open
directed 1-split
ver path
strongly
chordal
split tree 3-spanner
admissible

ptolemaic interval

Fig. 1. The complexity status of TREE #-SPANNER on chordal graphs and important subclasses.

if it has no cutset with <2 vertices. Blocks in a graph are maximal non-separable
subgraphs of that graph.

Clearly, a graph contains a tree z-spanner if and only if each of its blocks contains
a tree f-spanner. Note also that dividing a graph into blocks can be done in linear
time. Thus, in this paper, we consider non-separable graphs only. Graphs having a
tree f-spanner are called tree t-spanner admissible.

Finally, we will use the following fact in checking whether a spanning tree is a tree
¢-spanner.

Proposition 1 (Cai and Corneil [7]). A spanning tree T of a graph G is a tree
t-spanner if and only if, for every edge xy of G, dr(x,y)<t.
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2. NP-completeness, 1 >4

In this section we will show that, for any fixed ¢ >4, TREE ¢-SPANNER is NP-complete
on chordal graphs. The proof is a reduction from 3SAT, for which the following family
of chordal graphs will play an important role.

First, Si[x,y] stands for a triangle with two labeled vertices x and y. Next, for
a fixed integer k=1, Siy1[x, y] is obtained from Si[x, y] by taking a new vertex v,
for every edge e#xy in Si[x, y] that belongs to exactly one triangle and joining v,
to exactly the two endvertices of e. We write also Sy for Si[x, y] for some suitable
labeled vertices x, y. See Fig. 2.

Equivalently, Si11[x, y] is obtained from two disjoint S[a,b] and Si[c,d] by iden-
tifying the two vertices b,d to a vertex z and joining the vertices x:=a and y:=c
by an edge. With this notation, z is the common neighbor of x and y in Siii[x, y],
and we call Si[x,z] and Si[y,z] the two corresponding Si in Sii1[x, y]. We denote by
Si[x, v] the graph Si[x, y] — y, that is, the graph obtained from S;[x, y] by deleting the
vertex y. The following observations collect basic facts on S; used in the reduction
later.

Observation 1.

(1) For every v e Sk[xa y]v dSk[X,y](Ua {xr y}) < ’—k/2-|’

(2) Silx, v] has a tree (k + 1)-spanner containing the edge xy,

(3) Sklx,y) has a tree k-spanner T such that, for each neighbor y' of y in Si[x, y),
dr(x,y' ) <k.

Proof. (1) By induction on k. The statement is clearly true for £ =1,2. Assume k>3,
and let z; be the common neighbor of x, y in Si[x, y], let z, and z;3 be the common
neighbor of x,z|, respectively, of y,z in the corresponding Si_i[x,z;] and Sx_[y,z1].
By symmetry, we may assume that v € Sy_j[x,z;] =:4 or v &€ Sy_s[z1,22]=: B

v M

Sixy] S[xy] Sxy]
a c X y
A\
\7 d./. -
Sc-1[a;b] S-1led] Sdxy]

Fig. 2. The graph Si[x, y] obtained from S;_[a,b] and S;_[c,d] by identifying b =d and joining x =a
with y=c.
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Fig. 3. The graph obtained from H and S[x, y] by identifying the edge e =xy.

Consider the case v € 4. The induction hypothesis gives us that

k=2 k—2

da(v,x) < ’72-‘ or dy(v,z2) < ’72-‘ .

In the first case we are done. In the second case, we have

dsaen(e0) < ditoe) +1 < |52 41 < [5]
and the statement follows. The case x € B is similar.

(2) By induction on k. The statement is clearly true for k = 1. Assume £ >2, and let
z be the common neighbor of x, y in Si[x, y]. By the induction hypothesis, the corre-
sponding Sy_1[x,z] and Sx_i[y,z] have a tree k-spanner T}, respectively, 7, containing
the edge xz, respectively, yz. Then it is easy to see that 7:=T,U(T, — yz)+xy is a
desired tree (k + 1)-spanner of G.

(3) This is clear for k=1,2. Let k>3 and let z be the common neighbor of x, y in
Sik[x, ], and number the k& neighbors of y in the corresponding Sy_i[y,z] by z; =z,
Z,...,2x such that Si[x, y) consists of Sy_[x,z1], Sk—2[z1,22],...,S1[2Zk—2,2x—1] and the
edge z;_1zx. By (2), each of these graphs contains a tree k-spanner. The union of all
these tree spanners plus the edge z;_1z; gives us a tree k-spanner 7 of Si[x, y) with
dr(x,z))=i<k. O

Observation 2. Let H be an arbitrary graph and let e be an arbitrary edge of H.
Let K be an Si[x, y] disjoint from H. Let G be the graph obtained from H and K
by identifying the edges e and xy; see Fig. 3. Suppose that T is a tree t-spanner in
G, t>k, such that the xy-path P in T belongs to H. Then

(1) dr(x, y)<t — k, and

(2) there exists an edge uv € K with dr(u,v)=dr(x,y) + k.

Proof. By induction on k. For k=1, the statements follows directly from the fact that
T is a tree t-spanner of G. Let k> 1, and assume that the statements (1) and (2) are
true for arbitrary A and Sj_;.

Let z be the common neighbor of x and y in K, and consider the xz-path O in
T. As PCH and {x,y} is a cutset of G, Q CK\{y}, say. Let L and R be the two
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corresponding S _1[x,z], respectively, Sy_1[y,z] of K. As {x,z} is a cutset of K,
Q CL. Hence the yz-path PUQ in T belongs to the graph H’ induced by H and L.
The induction hypothesis, applied to H' and R, gives us that

dr(y,z) < t—(k—1) and dr(u,v) = dr(z,y)+(k—1)
for some edge uv € R, implying

dr(x,y)=dr(y,z) —dr(x,z) <t—(k—1)—1=1t—k
and

dr(u,v) = dr(z,y) + (k= 1) = dr(x,y) +dr(x,z) + (k= 1) = dr(x,y) + 1,
for the edge wwe RC K. [

Part (1) of Observation 2 indicates a way to force an edge xy to be a tree edge, or
to force a path of the tree to belong to certain part of the graph: Choosing k=¢ — 1
shows that xy must be an edge of T, or else the xy-path in 7 must belong to the part
Si—1[x, ]

We now describe the reduction. Let /* be a 3SAT formula with m clauses C; =
(cj1, ¢ja,cj3) over n variables v;. Set /:=[#/2| —2 and A:=[//2]. Since t=>4, />0
and 2>0.

For each variable v; create the graph G(v;) as follows.

o Set ¢ :=u;, qf*l :=7;. We will use ue {q?,qi/“} as a vertex in our graph as well

as a literal in the given 3SAT formula F.

e Take a clique Q; on / + 2 vertices ¢?,...,q/, ¢/ ™"

e For each edge xy € {¢“¢"™": 0<k </} create an S,_|[x, y]. No two of the S,_; have
a vertex in common unless those in {x, y}.

Take a chordless path on vertices s?,s!,...,s/ and edges s¥s*™, 0<k <.

Connect each s¥, 0<k </, to exactly ¢? and qlt/ 1

For each edges xy € {s¥s*™! : 0<k <A} create an S,_,[x, y].

For each edges xy € {s9¢?,s%q/ ™', s?q?,s/q/ ™'} create an S,_(/42)[x, ).

Note that the clique Q; is a cutset of G(v;) and the components of G(v;) — Q; are
chordal. Thus, G(v;) is a chordal graph. See also Fig. 4.

For each clause C; create the graph G(C;) as follows. If ¢ is even, G(C;) is simply
a single vertex a;. If ¢ is odd, G(C;) is the graph S,_i[a},a;]. In any case, G(C;) is
a chordal graph.

Finally, the graph G = G(F') is obtained from all G(v;) and G(C;) by identifying all
vertices sV to a single vertex s, and adding the following additional edges:

e connect every vertex in Q; with every vertex in Qy, i#i’. Thus, the cliques Q;,

1 <i<n, together form a clique Q in G,

e for each literal u; € {q?,qi/ N ifu,eC '; then connect u; with a; if ¢ is even, otherwise
with a} and a7.

The description of the graph G = G(F') is complete. Clearly, G can be constructed

in polynomial time.
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s

t=11

Fig. 4. The graph G(v;).

Lemma 1. G is chordal, and

. t+1 if tis even
diam(G) < {t+2 zjff ¢ is odd.
Proof. The connected components 4 of G — Q are induced subgraphs of the chordal
graphs G(v;) and G(C;), hence chordal. Since Q is a clique and the graphs G[Q U 4]
induced by QU4 are chordal, G is a chordal graph.

Consider two vertices x, y of maximum distance in G. Then, by construction, we

have the following cases.
o xS, sk, sk, yGSt_z[sff,/,sff,/J’l] for some i #7’.
e ¢ is odd, and x GS,,z[sf»‘,sf‘“],yé G(C;) for some i,;.
e ¢ is odd, and x € G(C;), y € G(C;r) for some j # j'.
o xeS_1[¢h. g, yeS,_1ld" g5 "] for some i1,

By Observation 1(1) we have in the first case

t—2 _Jt+1 if t even
d(x,y)<2w2%3—{t+z if ¢ odd,

in the second case,

t—2 t—1
< - - =
d(x,y)\[ 3 —‘Jr[ 2 —‘+3 t+2,
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in the third case,

d(x,y) <2- Fgll +3=1+2,

and in the last case (note that Q is a clique),

t—1
d(x,y)<2-{2-‘+l t— 1. 0

Lemma 2. Suppose G admits a tree t-spanner. Then F is satisfiable.
Proof. Let T be a tree ¢-spanner of G.

Claim. For every i,
e all edges ¢*¢*™', 0<k </, belong to 7, and
e exactly one of the edges sq? and sq{ *1 belongs to T.

Proof of the Claim. For every 0<k </, we have by Observation 2, the ¢*¢*"!-path
Fy in T must belong to the S;_[¢*,¢*"']. Thus, P= |J;_, F is the q?qlf“-path in
T and belongs to Uk _o Si— 1[q,, k“] Therefore, as T is a tree, sq, or sqf+1 cannot
belong to T, sq° ¢ E(T), say.

If sq/*! € E(T) then by Observation 2(1) applied on Si— 4[5, 471,
(42 >dr(s,q)) = |E(P)| +1 > ¢ +2,

hence |E(P)|=¢ + 1 and the claim follows in this case.

Assume sql+1 ¢E(T ). We will reach a contradiction. First, since sq” and sq/+1 are
not edges of 7 and s/ does not have any neighbor outside G(v;), Observatlon 2(1)
shows that the ss; —path in 7 must belong to the S,_5[s,s!]. Then, neither ¢’s! nor
q,/“ ! belongs to T, because otherwise d7(s,q! Y>/ 42 or dr(s, q%)>¢ +2, respec-
tlvely, contradicting Observation 2(1), applied on S,_(/42)[s, qf *11 and Si—+2)[s, 7’1,
respectively. Therefore, the s!s?-path in 7 must belong to the S, _5[s},s?]. Continuing
in this way we get

For 0<k <, the sks*! path in T belongs to the S,_,[sks¥1].

Moreover, all edges q, k. q/™'sk (0<k<2) do not belong to T.
Now, consider the sq’-path R in T. Since sq?,sqi/ *1¢ E(R), R cannot belong to the
Si—r+2)[5,4°] or to the S;_(/42)[s, g, '], otherwise d7(s,q. )= (£ + 1)+ |E(R)| =/ +3
or dr(s,q")=(/ + 1)+ \E(R)| =/ + 3, contradicting Observation 2.

Furthermore, as each s¥, 0<k </, has no neighbor outside G(v;), there exists a
up €{q%, ¢/}, i £i, such that u; is the first vertex of R that belongs to Q, start-
ing from s. Let r be the largest number such that the subpath of P from ¢° to g/
is a subpath of R. Without loss of generality, we may assume that r>=(/ + 1)/2,
because either the ¢Ys-path of T or the qf“s-path of T uses at least half of P.
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Thus,

. {41 l
dr(qd,s!) = r+dr(ql,up) +dr(up,s) + 7 > > +2+ [2—‘ .

Also, by Observation 1(2), there exists an edge uveS,_(/+2)[q?,sf'] such that
dr(u,v) > dr(qf,si) +1—(/ +2),

hence

/41 ¢ A
> 424 |2 —(+2)= 28 LA
dr(u,v) o+ +M+t (£ +2) t+M Sty >t

a contradiction. The Claim follows. [

Now, define a truth assignment b for variables v;’s as follows:

b(v;) = true  if sv; = sq° € E(T),
"7 | false otherwise.

By the Claim, b is well-defined. To see that b(F') = true, assume to the contrary that
there is some clause C;=(c;1,cj2,¢j3) such that b(cj1)=b(cj2) =b(c;3) =false. We

distinguish two cases.
Case 1: t is odd.

By definition of b, the edges sc;i,sc;» and sc;3 do not belong to 7. By the con-
nectedness of 7, there is exactly one edge in 7' connecting {c;i,c;»,c;3} and {a},ajz»}.

Without loss of generality, say cjla}- € E(T).

By Observation 2, the ajaj-path in T must belong to the S;_[a},a;]. Thus, by the

Claim and the fact that scy, k=1,2,3, are edges of T,
dr(aj,cp) = dr(aj,a)) + 1 + dr(cp,cin) + 2 + dr(T, )
=dr(aj,a}) +2(/ +1)+3

>2(/+1)+4:2Q§J —241) +4

=41,

a contradiction because 7' is a tree t-spanner of G.
Case 2: t is even.

In this case, as T is a tree, exactly one of the edges c;ia;,cjpa; and c;3a; belongs

to T, say cjia; € E(T). As in Case 1 we have:
dr(aj,cp)=2((+1)+3=1t+1,

a contradiction.

Thus each clause C; of F is satisfied by the assignment b, proving Lemma 2. [J

Lemma 3. Suppose F is satisfiable. Then G admits a tree t-spanner.
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s

Fig. 5. The tree t-spanner 7; (thick edges) in G(v;); illustrated in case b(v;)=true.

Proof. Let b be a truth assignment for variables v; that satisfies /. We construct a
spanning tree T of G as follows.
First, for each i, construct a tree ¢-spanner 7; of G(v;) in the following way:
e For each 0<k </, take a tree ¢-spanner in S;_; [qf.‘,qffH] containing the edge qf‘qf‘“.
Such a tree spanner exists by Observation 1.
e For each 0<k </, take a tree (¢ — 2)-spanner in S;_,[s¥, k“) Such a tree spanner
exists by Observation 1(3).
o Let u;€{q?,q/™"} such that b(u;) = true.
Take a tree (¢ — (£ + 1))-spanner in S,_/42)[s?,u;] containing the edge s%u; into
T;. Take a tree (¢ — (£ + 1))-spanner in S,_(/+2)[sf',u,-] containing the edge sful- into
T;. By Observation 1, such tree spanners exist.
Take a tree (1 —(/ +2))-spanner in S,_(/+2)[s?,%) and a tree (# — (£ +2))-spanner
in S;_ (/+2)[sf,17) into T; which have the property given by Observation 1(3).
Add all edges u;st, 1<k<A—1, into T;. See Fig. 5.

Claim 1. T; is a tree t-spanner of G(v;).

Proof of Claim 1. Let u; € {¢0,q +1} such that b(u;) = true. By construction, we need
only consider the following edges

(a) Edges s¥™'x in S;_,[s¥,s¥™!] where x is any neighbor of s¥*'. Since the restriction
of T; on S;_ z[s, ,sk“) is a tree (¢ — 2)-spanner and the edges u;sk, usk+1 belong to
T;, dr,(s1,x)<(t — 2) + 2 =t, and we are done.

(b) Edges u;x in S,_(/+2)[s[,E]US, (/H)[sk u;] where x is any neighbor of ;. If
xe{s?,st}, dr(w,x)=¢+2=|%] <t and we are done. For x ¢ {s,s{} we have in
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case x € S[_(/+2)[s?,7[] (note that s?u,— € E(Ty)):

dr.(,x) = dr,(,u;) + 1 +dr,(s2,x)
SU+D)+14+@—-(+2) =t

The case xeS,_(/Jrz)[sf,uT] is similar. Claim 1 follows.

Next, for each j, construct a tree ¢-spanner 7; of G(C;) in the following way: If ¢ is
odd, 7; is a tree ¢-spanner in G(C;) containing the edge a}ajg (exists by Observation
(1). If ¢ is even, T; is the single vertex a;.

Now, to obtain the desired tree t-spanner 7 of G we identifying all s in 7; to the
single vertex s, and for each j connect a}, respectively, a;, according to the parity of
t, to exactly one u; € {cji1,cj2,¢;3} such that b(u;) = true.

Claim 2. T is a tree t-spanner of G.

Proof of Claim 2. By Claim 1 and the construction of 7, we only need to consider

edges xy not incident with s and with property

e x€Q;, yeOr for i#i', or

e xe{aj,ai} (if ¢ is odd), respectively, x=a; (if ¢ is even) and y=cy for some
ke{1,2,3} with b(cj;)=false.

Consider the first case. Let u; € {¢?,q/ "'} and uy € {¢%, ¢/} such that b(u;) = b(u;)

=false. By construction of 7 we have

dr(x, y) < dp(ui,u;) + dr(ui,s) + dr(uy, ui) + dr (i, s)

:(/+1)+1+(/+1)+1:2EJ

<t

In the second case, let k' €{1,2,3} such that b(cj)=true and such that cjkfa}
(respectively, cja;) is an edge of T'. Then, if ¢ is odd,

dr(x,y) < 1+dr(aj,cip) +dr(cp,s) + dr(s, ) + dr(Ci, )

=4+(/+1)=3+BJ:3+%

<t

Similarly, if ¢ is even,

t

The proof of Lemma 3 is complete. [

Theorem 1 follows from Lemmas 1-3. We remark that the chordal graph G con-
structed above always admits a tree (¢ + 1)-spanner.
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3. Tree spanners in chordal graphs of “smaller” diameter

For a chordal graph G, it is known that diam(G)>2r(G) — 2 holds [9,10], i.e.,
r(G)<diam(G)/2 4 1. This already yields the following.

Theorem 5. Let t =2 be an even integer. Every graph G of diameter at most t — 1
admits a tree t-spanner. Moreover, if G is in addition chordal, such a tree spanner
can be constructed in linear time.

Proof. Choose a center vertex z (i.e., the eccentricity of z equals »(G)), and construct
a Breadth-First-Search tree T of G rooted at z. By the choice of z and as T is a
BFS-tree, we have for all edges xy € E(G):

dT(-xa y) < dT(xsZ) + dT(ysz) - dG(x,Z) + dG(yaZ)
<2r(G) <2 (“22 + 1)
—¢

because r(G)<diam(G)/2<((t —1)/2)+ 1, and, as ¢ is even, r(G)<((t —2)/2) + 1.
Note that a center vertex z in a chordal graph can be detected in linear time [11].
So, the tree T above can be constructed in linear time, too. [J

We remark that there are chordal graphs of diameter ¢ without tree #-spanner (con-
sider for example S;[x, y] with an extra vertex z adjacent to x and y only). Thus,
Theorem 5 is best possible under diameter constraints.

Corollary 1. Every chordal graph of diameter at most 3 has a tree 4-spanner, where
such a tree spanner can be constructed in linear time.

It remains an interesting open question whether existence of a tree 3-spanner in a
given chordal graph of diameter at most 3 can be tested in polynomial time.
The proof of the following lemma is completely similar to the proof of Theorem 5.

Lemma 4. Every graph G admits a tree (2r(G))-spanner. Moreover, if G is in addi-
tion chordal, such a tree spanner can be constructed in linear time.

Let now ¢ be an odd integer (¢>=3). From Lemma 4 and the fact that 2r(G) > diam
(G)=2r(G) — 2 holds for any chordal graph G, we immediately deduce.

Theorem 6. Every chordal graph of diameter at most t — 2 admits a tree t-spanner,
and such a tree spanner can be constructed in linear time.

It would be nice to show also that, if #>3 is an odd integer, then every chordal
graph of diameter at most #—1 admits a tree z-spanner. But, although for chordal graphs
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with diam(G)>2r(G) — 1 this is true, it fails to hold for chordal graphs of diameter
2r(G) — 2. There are even chordal graphs of diameter 2 without tree 3-spanners. In
what follows we will show that the existence of a tree (27(G)— 1)-spanner in a chordal
graph of diameter 27(G)—2 “depends” on the existence of a tree 3-spanner in a chordal
graph of diameter 2.

First we present some auxiliary results. Let v be a vertex of G=(V,E). The disk
centered at v with radius & is the set of all vertices having distance at most k to v:
D(v,k)y={u: ueV and dg(u,v)<k}. Let r(v) be a non-negative integer associated
with a vertex v of a graph G. For a vertex set M C V/, a subset D C V' is r-dominating
for M in G if for all veM there is a u€D with dg(u,v)<r(v). If the set D
r-dominates M and is a clique then D is an r-dominating clique for M in G. The
following simple necessary and sufficient condition for the existence of r-dominating
cliques in chordal graphs was presented in [13].

Lemma 5. Let G=(V,E) be a chordal graph, M CV be any subset of V and r: M —
NU{0} be the radius function associated with M. Then M has an r-dominating clique
if and only if for every pair of vertices v,w € M, the inequality

deg(v,w) < gr(v) +r(w) +1

holds. Moreover, such a clique can be determined within time O(|M| - |E]).

A subset SCV is m-convex if S contains every vertex on every chordless path
between vertices of S. We will need the following well-known property.

Lemma 6 (Farber and Jamison [15]). Any disk D(v,k) of a chordal graph is
m-convex.

For a subset SCV and a vertex ve V, let
proj(v,S)={u €S : d¢(v,u) =dg(v,8)}

be the metric projection of v to S. For a subset X CV, let proj(X,S)= J,cx proj
(v,S). A subset ACV is a two-set in G if dg(v,u)<2 holds for every v,u € 4.

Lemma 7. Let G be a (not necessarily chordal) graph. The metric projection proj
(4,8) of any two-set A to an m-convex set S of G is a two-set.

Proof. Let 4 be a two-set in G and uy, u, be two non-adjacent vertices from proj(4,S).
Let also v;, i € {1,2}, be a vertex of 4 with u; € proj(v;,S) and P, be a shortest path
between u; and v;. Since u; € proj(v;,S) no other vertex of P, belongs to S.

Let u be any vertex in D(vy,1)ND(vp,1). Let H be the subgraph of G induced by
vertices in V(P;)UV(P)U{u}. Then, let P be any induced subpath of H from u; to
uy. Since u is the only vertex of H\{u;,u,} which may be in S, path P is path u;,u, us,
because otherwise there is an induced u;u,-path in G that contains at least one vertex
not in S, which contradicts the fact that S is m-convex. Thus, dg(uj,uy)<2. [
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Lemma 8 (Chepoi [10] and Dragan and Brandstidt [13]). Let G be a (not necessarily
chordal) graph. For any m-convex set S and vertices ve V,u € S of G there is a vertex
w e proj(v,S) such that dg(v,u)=dg(v,w)+dg(w,u), i.e., w lies on a shortest path
between v and u.

Lemma 9. In every chordal graph G =(V,E) of diameter 2r(G) — 2 there exists a
two-set S such that dg(v,S)<r(G)—2 for every vE€ V. Moreover such a two-set can
be determined within time O(|V|*).

Proof. Assume that (v,...,v,) is an ordering of V' and let i be the largest index for
which a two-set S exists such that dg(v;,S)<r(G) — 2 holds for every je {1,...,i}.
If i <n then we have dg(v;11,8)=2r(G) — 1.

First we show that § can be chosen to be entirely in D(vi.1,7(G)). If
S\D(v;+1,7(G))#0, then consider the projection of S to the set D(vit1,7(G)). Due
to the m-convexity of disks in chordal graphs, the projection proj(S,D(vi+1,7(G)) is
a two-set, according to Lemma 7. Denote this set by S’. For all j, j<i, consider a
vertex u; € SND(v;,7(G) —2) and w; € D(v;,7(G) — 2) N D(vi41,7(G)) (such vertices
exist since dg(v;,S)<r(G) — 2 and diam(G)=2r(G) — 2). According to Lemma 8
there is a vertex u} €S’ such that

dg(uj,wj) = dg(uj,u;) + d(u), w;)

holds. Due to the m-convexity of disks, for all j, j<i, u; € D(v;,r(G) —2) is fulfilled,
ie., for all j<i, dg(v;,S")<r(G) — 2. Thus, we could assume at the beginning that
S CD(vi41,7(G)).

Now we can apply Lemma 5 to the set M =SU{v;1} with the radius function
r(vi41)=r(G)—2 and r(v)=1 for all v€ S, and get a clique C such that dg(v;11,C)<
r(G)—2 and every vertex of S is adjacent to a vertex of C. Let u/ , be a vertex of C
with dg(vig1,ul, ;) <r(G)—2. It is easy to see that the set A=SU{u,,} is a two-set
and dg(vj,A)<r(G)—2 holds for any j<i-+1. But this contradicts with the maximality
of i. Thus, i has to be equal to n and the first part of the lemma follows.

Time bound: First we can determine within O(|V| - |E|) steps the distance matrix
of G.

i-th iteration: Since the distances of v;y; to all other vertices are known in advance,
the projection of two-set S to the disk D(v;11,#(G)) can be determined within O(|V] -
|S|) steps. The vertex u/,, can be determined also within O(|V'|?) steps. There are at
most |V| such iterations, and each iteration requires at most O(|V|?) time. [J

Lemma 10. Every maximal by inclusion two-set of a chordal graph is m-convex.

Proof. Let S be a maximal by inclusion two-set and assume that there is an induced
path P between vertices x and y such that PNS={x,y}. Let v be a vertex of P
adjacent to x. Since v¢ S and S is a maximal by inclusion two-set, there must be a
vertex w in S with dg(v,w)=3, dg(x,w)=2 and dg(y,w)<2. Since x,y € D(w,2)
and vertex v from induced path P connecting x and y does not belong to D(w,2), a
contradiction with m-convexity of disks in chordal graphs arises. [I
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Theorem 7. Chordal graphs of diameter 2r(G)—2 admit tree (2r(G) — 1)-spanners if
and only if chordal graphs of diameter 2 admit tree 3-spanners. Moreover, if a tree
3-spanner of any chordal graph of diameter 2 can be found in polynomial time, then
a tree (2r(G) — 1)-spanner of a chordal graph of diameter 2r(G) — 2 can be found
in polynomial time, too.

Proof. The “only if” direction is obvious.

The “if” direction. Let G be a chordal graph of diameter 2r(G) — 2. By Lemma 9,
G has a two-set S such that dg(v,S)<r(G) — 2 holds for any ve V, and such a set
S can be found in O(]V]*) time. We can extend S to a maximal by inclusion two-set
within the same time bound. So, without loss of generality, assume that S is a maximal
two-set and, hence, it is m-convex. Since S contains together with any two vertices
also all shortest paths connecting them in G, subgraph G(S) of G induced by the set
S is a chordal graph of diameter at most 2. By the theorem assumption, G(S) has
a tree 3-spanner 7(S). We can run a BFS on G started at the set S to extend the
tree T(S) to a spanning tree 7 of G. We show now that T is a (2r(G) — 1)-spanner
for G. Consider any edge xy € E(G). Let x' and )’ be the vertices of subtree T(S)
of a tree T that are closest to x and y in T, respectively. Since T is constructed
from T(S) (from S) in a BFS manner, we have dr(x,x")=ds(x,x")<r(G) — 2 and
dr(y,y')=de(y,y')<r(G) — 2. Let Py, P, be the paths connecting x with x" and y
with )’ in T and consider a path of G formed by P,, edge xy, and P,. Since two non-
adjacent vertices of m-convex set S cannot be connected by a path with inner vertices
outside S, we conclude that either x' = )’ or x’y’ € E(G) and, hence, x'y' € E(G(S)).
Therefore, dy(x',y") =drs)(x', y')<3 holds. Now, dr(x,y)=dr(x,x") +dr(x', y") +
dr(y,Y)<r(G)—2+4+34+r(G)—2=2r(G)— 1 and we are done. [J

We do not know how to use this theorem for general chordal graphs (since not all
chordal graphs of diameter 2 have tree 3-spanners), but this theorem could be very
useful for those hereditary subclasses of chordal graphs where each graph of diameter
2 is tree 3-spanner admissible. Then, for every graph of diameter at most # — 1 from
those classes, a tree f-spanner will exist and it could be found in polynomial time
if corresponding tree 3-spanner is constructable in polynomial time. For an arbitrary
chordal graph G with diam(G)=2r(G) — 2, it can happen that a chordal graph of
diameter at most 2, generated by a two-set of G (found as described in Lemma 9 and
Theorem 7), does not have a tree 3-spanner, but yet G itself admits a (2r(G) — 1)-
spanner. We are still working on TREE (27(G) — 1)-SPaNNER problem in chordal graphs
of diameter 2(G)—2. It is natural to ask whether a combination of Theorems 7 and 9
will work.

4. Tree 3-spanners in chordal graphs of diameter 2

In this section, we give an application of Theorem 7 as well as a criterion for the
tree 3-spanner admissibility of chordal graphs of diameter at most 2.



A. Brandstddt et al. | Theoretical Computer Science 310 (2004) 329-354 345

Lemma 11 (Chang and Nemhauser [9] and Voloshin [30]). Let G be a chordal graph.
If all vertices v; of a cligue C={v,...,vx} have the same distance from a vertex
veV then there is a common neighbour u of all elements of C which has distance
deg(v,C)—1 to v.

This follows also from the necessary and sufficient condition for the existence of
r-dominating cliques in chordal graphs. Consider r(u#)=0 for all u€ C and r(v)=dg
(v,C)— 1.

A graph G is non-trivial if it has at least one edge.

Lemma 12. Let G be a non-trivial chordal graph of diameter at most 2. If G does
not contain a clique Ks on five vertices, then G has a dominating edge, i.e., an edge
e € E such that dg(v,e)<1 for any veV.

Proof. Notice that G must have a dominating clique, i.c., a clique C such that any
vertex of G is in C or is adjacent to a vertex in C. For this it is enough to consider
the neighborhood N(v) of any simplicial vertex v of G. Since dg(u,v)<2 for every
u eV, this clique N(v) dominates G.

Consider now among all cliques dominating G the one with minimum cardinal-
ity. Denote it also by C. We claim that |C|<2. If this is not the case, then we
can find three vertices a,b,¢ in C and three vertices a’,b’,¢’ outside C with proper-
ties N(a')N{a,b,c} ={a}, N(b'YN{a,b,c} ={b} and N(c')N{a,b,c} ={c}. Vertices
a',b',c are called private neighbors of a, b, c, respectively. Since G is chordal, vertices
a',b',c’ are pairwise non-adjacent.

First we show that then a vertex v must exist such that N(v) 2 {a,b,c,da’,b’,c'}.
In fact, by chordality of G, it is enough to show that N(v) 2 {d’,b’,c’}. Assume, by
way of contradiction, that no such vertex v exists. Since diam(G)=2, there must be
vertices x, y,z in G such that x is adjacent to a’,c¢’ and not to &', y is adjacent to
b',¢’ and not to @', z is adjacent to @’,b" and not to ¢’. By chordality of G, in cycle
a —x—c' —y—b'—z—d there must be chords zx,xy, yz. Analogously, by considering
cycles on five vertices, we conclude that xa, xc, yc, yb,zb,za € E. Now, to avoid induced
cycles on 4 vertices, two of the following three possible chords zc, ya,xb must be
present in G. In conclusion, at least five out of six vertices {a,b,c,x, y,z} induce a
complete subgraph in G, which is impossible.

Thus, there is a vertex v in G such that N(v) 2 {a,b,c,a’,b’,c'} for any triple &', b, ¢’
of private neighbors of a,b,c. Next we show that any vertex x € V\N(v) is adjacent
to every vertex from {a,b,c}, thus concluding that vf is a dominating edge of G for
any t € {a,b,c}.

If x is not adjacent to any vertex from {a,b,c}, then dg(x,{a,b,c,v})=2 and we
can apply Lemma 11 to get a new vertex x’ which together with a,b,c,v will induce
a forbidden clique of size 5. Hence, x must be adjacent to a vertex from {a,b,c},
say xa € E. If now xb,xc ¢ E then x is a private neighbor of a and therefore there
must be a vertex u # v in G such that N(u) D {a,b,c,x,b’,c'}. To avoid an induced
cycle b —u — ¢ — v —b', we must have a chord uv. But then Ks=/{a,b,c,u,v}
arises.
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Assume now, without loss of generality, that xa,xb € E but xc¢ E. Then xc’' ¢ E
since otherwise vertices x,a,c,¢’ would form an induced cycle. As diam(G) =2, there
is a common neighbor u of ¢’ and x in G. By considering cycles ¢/ —c—a—x—u—c’
and ¢ —c—b —x —u— " we get uc,ub,ua € E. Also, to avoid an induced cycle
u—a—v—c —u, achord uv must be present. Then again, a clique of size 5 on
vertices a,b,c,u,v arises. Hence, any vertex of G not adjacent to v is adjacent to all
a,b,c.

Since neither planar graphs nor 3-trees have cliques on 5 vertices and any graph
with a dominating edge is trivially tree 3-spanner admissible, we conclude.

Corollary 2. Let G be a non-trivial graph of diameter at most 2. If G is a planar
chordal graph or a k-tree for k<3, then G has a dominating edge and hence a tree
3-spanner.

As we mentioned in introduction, there is no constant ¢ such that planar chordal
graphs or k-trees (k>=2) are tree t-spanner admissible. So, it is interesting to mention
the following result.

Theorem 8. Every chordal graph of diameter at most t — 1, if it is planar or a k-tree
(k<3), has a tree t-spanner and such a tree spanner can be constructed in polynomial
time.

In what follows we will assume that G is an arbitrary chordal graph which admits
a tree 3-spanner 7. Note that any tree of diameter at most 2 is a star and any tree of
diameter 3 has a dominating edge (in this case 7T is called a bistar).

Lemma 13. For any maximal (by inclusion) clique C of a chordal graph G one of

the following conditions holds.

(a) C induces a star in T,

(b) either C induces a bistar in T or there is a vertex v¢ C such that CU{v} induces
a bistar in T.

Proof. Since T is a 3-spanner for G, for any two vertices x, y of C, dr(x, y)<3 holds.
If T(C) is a subtree of T (i.e., T(C) is connected) then 7(C) is either a star or a
bistar. If 7(C) is disconnected then, by Lemma 5 applied to 7" and C, there must exist
an edge uv in T which dominates all vertices of C (in 7). Assume that both vertices
u and v lie outside C. Since C is a maximal clique, there must be two vertices v and
v’ in C such that vo',ur/ € E(G) and v/, uv’ ¢ E(G). But then vertices u,u’,v’,v form
an induced cycle of length 4 in G, which is impossible. [

Clearly, 7 is a star only if G has an universal vertex, and the diameter of 7 is 3
only if G has a dominating edge. The following theorem handles the case of all chordal
graphs of diameter at most 2. Unfortunately, not every such graph has a dominating
edge. There are chordal graphs of diameter 2 which do not have any tree 3-spanners,
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and there are chordal graphs of diameter 2 that have a tree 3-spanner but all those
spanners are of diameter 4.

Theorem 9. A chordal graph G of diameter at most 2 admits a tree 3-spanner if and

only if one of the following three conditions holds.

(1) G has an universal vertex,

(2) G has a dominating edge,

(3) there is a vertex v in G such that any connected component of the second neigh-
borhood of v has a dominating vertex in N(v).

Proof (If direction). We construct a tree 3-spanner 7 of G in the following way. In
case (1) we connect all vertices from V'\{v}, where v is an universal vertex of G, to
v. In case (2), for a dominating edge uv of G, we connect all vertices of N(v) to v and
all vertices from V\N(v) to u. In the last case, for that special vertex v, first we find
all connected components of the second neighborhood N(v)={weV :dg(v,w)=2}
of v. Then for each component 4 found, we search the set N(v) for a vertex a
dominating 4 and connect vertices of 4 to a. Finally, we connect all vertices from
N(v) to v. It is easy to see that tree 7 constructed in this way is a 3-spanner
of G.

(Only if direction) Assume that graph G has a tree 3-spanner T but neither of
conditions (1) and (2) is fulfilled. Then the diameter of 7 must be at least 4. Consider
vertices a,b of T at distance 4 and the middle vertex v of a shortest path connecting
a with b. Let S={xe€V : xv€E(T)} and §'’=SU{v}. Clearly, |S|>2, and deleting
vertices of S’ from T will disconnect 7. Let T, and T} be subtrees of 7\S’ containing
vertices a and b, respectively. Note that 7, and T, are different subtrees of 7. Since
T is a 3-spanner of G, no vertex from V(T,) is adjacent to a vertex of V(7p) in
G. Hence, S’ is a cutset of G. Moreover, from diam(G)<2 we deduce that every
vertex of G is either in S’ or adjacent to a vertex of S’. Therefore, any vertex from
N,(v) (all neighborhoods here are considered in G) is adjacent in G to a vertex of S.
Consider now an arbitrary connected component A of the subgraph of G induced by
set Np(v).

Claim 1. N(A)NN(v) is a clique.

Proof. Consider any two vertices ¢,s in N(4) NN (v) and let ¢ and s’ be neighbors in
A of t and s, respectively, such that the distance dg4)(#',s") is minimal. Let also P be
a path of length dg4)(?,s") connecting ¢ and s’ in A. If ts¢ E(G), then this path P
together with vertices ¢, s and v will form an induced cycle of length greater than 3 in
G, which is impossible. [

Claim 2. Neighborhoods in N(v) of any two adjacent vertices s and t from A are
comparable. That is, N(t) NN(v) CN(s)NN(v) or N(s)NN(v) CN({)NN(v).

Proof. If those neighborhoods are non-comparable, then there must exist vertices
t and s in N(v) such that #',ss’ € E(G) and ts',st' ¢ E(G). But then, since
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s’ € E(G) (by Claim 1), vertices t,s,s',¢ form an induced cycle of length 4
in G. O

Claim 3. If there is a vertex x in A which is adjacent in G to exactly one vertex of
S, say y, then AC N(y) must hold.

Proof. Consider any neighbor u of x in 4. If uy ¢ E(G) then a neighbor w of u in
S must be adjacent to x (by Claim (2) and a contradiction arises. Hence, uy € E(G)
holds for any neighbor u of x in 4. [

Consider now a non-neighbor v of x in 4 and assume that v'y ¢ E(G). Then,
dg(x,v")=dg(y,v")=2. Let w be a neighbor of v’ in § and u be a common neighbor
of x and v’ (u can be either in 4 or in N(v)\S). Note that wx ¢ E(G). If ue€ N(v)\S
then vertices y,u,w are pairwise adjacent by Claim 1. If u € 4 then, uy € E(G) since
u is a neighbor of x in A. Also, yw € E(G) by Claim 1, and uw € E(G) by Claim 2.
Thus, in any case vertices y,u,w are pairwise adjacent in G. Consider a maximal (by
inclusion) clique C,,,, containing vertices y,u and w. Note that C,,,, may contain v if
u € N(v). Two vertices of this clique, namely y and w, are dominated in 7 by vertex
v. Recall that y,w e S and hence yv,wv € E(T). We have also that vu ¢ E(T) even if
vu € E(G), since u¢ S. Hence, by Lemma 13, there is a vertex z in G such that zv is
the dominating edge for Cy,, in T, ie., zv,zu € E(T') (and hence z € §).

Assume z # y and consider a maximal (by inclusion) clique Cyy, in G containing
vertices y,x and u. Since vertices y,u of C,y, are connected in T by path y —v—z—u,
the edge vz must be the dominating edge of C,,, in 7. But neither v nor z is adjacent
to x. Hence, a contradiction with Lemma 13 arises.

Let now z=y and C,,, be a maximal (by inclusion) clique of G containing vertices
w,v" and u. Since vertices u,w of C,,, are connected in T by path u — y — v — w,
the edge yv must be the dominating edge of C,,, in 7. But again neither y nor v is
adjacent to v/, and a contradiction with Lemma 13 arises.

So, contradictions obtained show that any non-neighbor v’ of x in 4 must be adjacent
to y, too. Therefore, 4 C N(y), and Claim 3 follows.

By Claim 3 we may assume now that any vertex of 4 has at least two neighbors in
S. Also, by Claim 1, those neighbors have to be adjacent. Consider any edge ux of 4.
We claim that there exists a vertex z € S such that zx,zu € E(T) holds.

Since the neighborhoods of u and x in S have to be comparable, there must be
two vertices w and y in S such that u,x,w and y together form a clique in G. Let
Cyyuw be a maximal (by inclusion) clique of G containing all four vertices x, y,u, w.
Two vertices of this clique, namely y and w, are dominated in 7 by vertex v since
y,w€E€S. We have also that vu,vx ¢ E(T) since vu,vx ¢ E(G). Then, by Lemma 13,
there must be a vertex z in G such that zv is the dominating edge for C,,,,, in 7, i.e.,
zv,zu,zx € E(T) (and therefore z € ).

Thus, end-vertices of any edge of 4 are dominated in 7 by one vertex from S.
Since all vertices of S are adjacent in 7T to v and 7 cannot contain any cycles,
there must be just one vertex in S that dominates in 7" (and hence in G) all vertices
of 4. O
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Since conditions (1) and (2) are particular cases of condition (3) we have the
following.

Corollary 3. A chordal graph G of diameter at most 2 admits a tree 3-spanner if
and only if there is a vertex v in G such that any connected component of the second
neighborhood of v has a dominating vertex in N(v).

We conclude this section with the following corollary.

Corollary 4. For a given chordal graphs G=(V,E) of diameter at most 2, TREE
3-SPANNER can be decided in O(|V||E|) time. Moreover, a tree 3-spanner of G, if it
exists, can be constructed within the same time bound.

Proof. First we can search G for an universal vertex in O(|E|) time, and for a dom-
inating edge or/and for a special vertex v with the property described in Theorem
9 (condition 3) in O(|V]|E|) time. Then the construction of 7 (see the proof of
Theorem 9) will take only linear time. [

5. Tree spanners in strongly chordal graphs

For an integer k>3, a k-sun consists of a k-clique {v,...,v;} and a k-vertex stable
set {uy,...,ux}, and edges wvs,u;vi1, 1<i<k, and wivp,urv1. A chordal graph is
strongly chordal [14] if it does not contain a k-sun as an induced subgraph. In [3],
it is proved that every strongly chordal graph admits a tree 4-spanner and such a tree
spanner can be constructed in linear time. Not every strongly chordal graph has a tree
3-spanner. Actually, TREE 3-SPANNER remains open on strongly chordal graphs.

A k-planet is obtained from a k-path v v,v5 - - - vy and a triangle abc by adding edges
av;, 1<i<k —1 and bv;, 2<i<k; see Fig. 6.

Definition 1. A chordal graph is called very strongly chordal if and only if it does not
contain a k-planet as an induced subgraph.

As a 3-sun is a 3-planet and every k-sun (k>4) contains an induced 4-planet,
the class of very strongly chordal graphs is properly contained in the class of strongly
chordal graphs. Moreover, the class of very strongly chordal graphs contains all interval

Fig. 6. A k-planet.
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graphs and all distance hereditary chordal graphs, called ptolemaic graphs [9]. The
nice feature of this subclass of strongly chordal graphs is

Theorem 10. Every very strongly chordal graph admits a tree 3-spanner and such a
tree spanner can be constructed in linear time.

Proof. Let v be an arbitrary vertex of G. Write
Ni(v) = {x: d(v,x) =i},

and assume that V(G)= (J, Ni(v). Let G; = G[N;(v)], the subgraph of G induced by
Ni(v).

Claim. For every i=1,...,q and for every connected component A4 of G; there exists
a vertex vy € N;—1(v) adjacent to all vertices in A.

Proof of the Claim. Assume that the claim is false, and consider the smallest i such
that the statement does not hold. Then i>1 and there exist two vertices uj,uy € B:=
N(A)NN;_1(v) such that

Ng(ui)\Ny(uz) # 0 and  Ny(uz)\N4(ur) # 0.

Fix two such vertices uj,u; and choose a € Ny(u;)\Ny(uz) and o’ € Ny(uz)\Ny(ur)
such that the shortest aa’-path in 4 has minimum length. Note that, as G is chordal, B
is a clique, and hence, by the minimality of i, there exists a vertex u € N;_,(v) adjacent
to u; and up. Now, let ajay - - - a; be the shortest aa’-path in 4; a;:=a and a;:=d’.
As G is chordal, k>3 and each a; must be adjacent to u; or to u,. By the choice of
a and d', each a;, 1 <j <k, must be adjacent to both u; and u,. But then aj,...,a,
uy,uy, and u induce a k-planet, a contradiction. The claim is proved.

The claim shows that the following procedure constructs a tree 3-spanner 7' of G
correctly:

1. V(T):=V(G);, E(T):=0

2. for i:=¢g downto 1 do

3. for each connected component 4 of G; do
4 choose a vertex vy € N;—1(v)

5 E(T):=E(T)U{vyx:x€A}

The running time of this procedure is at most
q q
Zl o(|V(G)| + [E(G)]) =0 <Zl VGl + |E(Gi)|>
=0([V(G)[+|EG)). O

Another well-known subclass of strongly chordal graphs consists of the intersection
graphs of directed paths in a rooted directed tree, called directed path graphs. The class
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of directed path graphs generalizes interval graphs naturally, and contains all ptolemaic
graphs [12], and is tree 3-spanner admissible [21].

The intersection graphs of paths in a tree are called (undirected) path graph. We
call shortly a graph strongly path graph if it is strongly chordal as well as a path
graph. Clearly, every directed path graph is a strongly path graph, but not vice versa.
Indeed, there are many strongly path graphs having no tree 3-spanner (while every
directed path graph does [21]). Moreover, in contrast to strongly chordal graphs, for
every ¢, there is a path graph having no tree ¢-spanner [20].

6. Tree spanners in k-split graphs

A split graph is one whose vertex set can be partitioned into a clique and a stable
set. Split graphs are exactly those chordal graphs whose complements are chordal as
well. It is known (and easy to see; cf. [6,20,29]) that every split graph admits a tree
3-spanner. We are going to describe a new subclass of chordal graphs containing all
split graphs and still are tree 3-spanner admissible.

First, for an arbitrary graph G let S(G) be the set of all simplicial vertices of G.
We also use S(G) for the subgraph of G induced by S(G).

Lemma 14. For every connected component A of S(G),
(1) A is a clique,

(2) every vertex in A is adjacent to every vertex in N(A4),
(3) N(A) is a clique.

Proof. (1) If x# y are two non-adjacent vertices in A then there exists a chordless
xy-path xz1zp - --zxy in A, k>1. Then, as x and z, (possibly z; = y) are non-adjacent,
z; cannot be a simplicial vertex of G.

(2) If ve N(A4) is non-adjacent to a vertex in 4, then by (1), any neighbor of v in
A would be a non-simplicial vertex.

(3) By (2), every two vertices in N(4) have a common neighbor in A4, hence the
are adjacent because vertices in 4 are simplicial vertices in G. [J

Lemma 15. If G\S(G) has a tree (t — 1)-spanner then G has a tree t-spanner.

Proof. Let T’ be a tree (¢ — 1)-spanner in G\S(G). According to Lemma 14(2) we
construct a spanning tree 7 of G as follows.

1. V(T):=V(G); E(T):=E(T")

2. for each connected component 4 of S(G) do
3. choose a vertex vy € N(4)

4. E(T):=E(T)U{vyx:x€A}

T is a tree ¢-spanner of G: Consider an edge xy of G. If xy belongs to G\S(G),
dr(x,y)=dp(x,y)<t — 1. If xy belongs to S(G), dr(x,y)=2 by construction. If
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x€G\S(G) and y€S(G), say x€N(A), y€ A for some connected component 4 of
S(G), then

dr(x,y) = 1+dr(v,x) =1+dr(vex) < 14+ —-1) =1t

Note that, given 7’ and S(G), the tree t-spanner T' of G can be constructed in linear
time. [J

Definition 2. For an arbitrary graph G and an integer k>0 let Gy := Gr—1\S(Gx—1);
Go:=G. A graph G is called k-split if G is a clique.

Clearly, 0-split graphs are exactly the cliques, and all split graphs are 1-split but not
vice versa. The following fact is probably known.

Proposition 2. A graph G is chordal if and only if G is k-split for some k.

Proof. Since every chordal graph has a simplicial vertex, the if-part is obvious. Assume
now that Gy is a clique for some k. Then by Lemma 14, the graph G;_; (induced by
Gy and S(Gy_1)) is chordal. Repeating this argument we get that G = Gy is chordal,
too. [l

Theorem 11. Every k-split graph admits a tree (k + 2)-spanner.

Proof. Since Gy is a clique, it admits a tree 2-spanner. It follows from Lemma 15 that
G =Gy admits a tree (k 4 2)-spanner. [J

Corollary 5. All 1-split graphs, hence all split graphs, admit a tree 3-spanner, and a
such a tree 3-spanner can be constructed in linear time, given the set of all simplicial
vertices.

Note that the existence of a tree (k + 2)-spanner in k-split graphs is best possible:
there are many k-split graphs without tree (k + 1)-spanner; for example, the 3-sun is
1-split (even split) and has no tree 2-spanner.

7. Conclusion

In this paper we have proved that, for any ¢# >4, TRee 7-SpaNNER is NP-complete on
chordal graphs of diameter at most  + 1 (if ¢ is even), respectively, at most ¢ 4+ 2 (if
t is odd), improving the hardness result in [7] on a restricted well-understood graph
class. We have shown that every chordal graph G of diameter at most ¢ — 1 is tree
t-spanner admissible if diam(G) #2r(G) — 2.

The complexity of TREE #-SPANNER remains unresolved on chordal graphs of diameter
t (if ¢ is even) and of diameter ¢ or t+1 (if # is odd). TREE #-SPANNER remains also open
on path graphs and the case t =3 remains even open on path graphs that are strongly
chordal graphs as well. However, we have shown that all very strongly chordal graphs,
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a subclass of strongly chordal graphs that contains all interval graphs and all ptolemaic
graphs, are tree 3-spanner admissible, and a tree 3-spanner for a given very strongly
chordal graph can be constructed in linear time. This improves known results on tree
3-spanners in interval graphs [20,22,27]. We have also improved known results on tree
3-spanners in split graphs [6,20,29] by showing that all 1-split graphs, a subclass of
chordal graphs containing all split graphs, are tree 3-spanner admissible, and a tree
3-spanner for a 1-split graph can be constructed in linear time, given the set of its
simplicial vertices. We presented a polynomial time algorithm for the TREE 3-SPANNER
problem on chordal graphs of diameter at most 2.
Many questions remain still open. Among them:
(1) Can Tree 3-SpannNer be decided efficiently on chordal or strongly chordal graphs?
At least for strongly path graphs? And on 2-split graphs?
(2) Can Tree (2r(G)—1)-SpannEir be decided efficiently on chordal graphs of diameter
2r(G) —2?
(3) What is the complexity of TREE ¢-SPANNER for chordal graphs of diameter at
most 7.
We also do not know whether all very strongly chordal graphs are strongly path graphs.
Are these graphs even directed path graphs?
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