

On stable cutsets in graphs

Andreas Brandstädt^{a,*}, Feodor F. Dragan^{b,1}, Van Bang Le^a,
Thomas Szymczak^a

^aUniversität Rostock, FB Informatik, Albert-Einstein-Str. 21, D-18051 Rostock, Germany

^bUCLA Computer Science Department, 3514 Boelter Hall, Los Angeles, CA 90095-1596, USA

Received 18 November 1998; revised 29 January 2000; accepted 21 February 2000

Abstract

We answer a question of Corneil and Fonlupt by showing that deciding whether a graph has a stable cutset is NP -complete even for restricted graph classes. Some efficiently solvable cases will be discussed, too. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Stable cutsets; NP -completeness; 1-IN-3 3SAT; Brittle graphs; Hole-free graphs; Efficient algorithms

1. Introduction

In a graph, a *stable set* (a *clique*) is a set of pairwise non-adjacent (adjacent) vertices. A *cutset* is a set of vertices whose deletion results in a disconnected graph. A *stable cutset* is a cutset which is also a stable set. Stable cutsets in graphs have been discussed by Tucker [18], Corneil and Fonlupt [5] in connection with perfect graphs. In [5], Corneil and Fonlupt proposed the following problem.

STABLE CUTSET: *Given graph G . Does G have a stable cutset?*

This problem is also mentioned by Chvátal et al. in [4]. In this note we prove that STABLE CUTSET is NP -complete even for K_4 -free graphs and for graphs with connectivity number 2. Our results are best possible in the sense that STABLE CUTSET trivially can be solved in linear time for K_3 -free graphs and for graphs with connectivity number at most 1. After writing a first version of this note, Cunningham [8] informed us that NP -completeness of the STABLE CUTSET problem (for line graphs) might be derived also from the result of Chvátal [3] on decomposable graphs. We present this in Section 2. In Sections 4 and 5, we shall discuss STABLE CUTSET in graphs without long

* Corresponding author.

E-mail addresses: ab@informatik.uni-rostock.de (A. Brandstädt), dragan@CS.UCLA.EDU (F.F. Dragan), le@informatik.uni-rostock.de (V.B. Le), szymczak@informatik.uni-rostock.de (T. Szymczak)

¹ Author supported by the German Research Community DFG.

induced cycles. Among them are HHD-free graphs, brittle graphs, hole-free graphs and AT-free graphs. It turns out that for all these graph classes, STABLE CUTSET can be solved in polynomial time. (For more information on graph classes considered here, see the survey [2].)

Notice that the related CLIQUE CUTSET problem can be solved in polynomial time; see for instance [19].

2. Stable cutsets in line graphs

In order to make the paper self-contained, we are going to describe a consequence of Chvátal's results on decomposable graphs to the STABLE CUTSET problem. A graph is called *decomposable* if its vertices can be colored with two colors in such a way that each color appears on at least one vertex and each vertex v has at most one neighbor having a different color from v . In other words, a graph is decomposable if its vertices can be partitioned into two nonempty parts such that the edges connecting vertices from different parts form an induced matching.

Theorem 1 (Chvátal [3]). *Recognizing decomposable graphs is NP -complete, even if the input is restricted to graphs with maximum degree 4.*

Note that this result is best possible in the sense that decomposable graphs with maximum degree at most 3 can be recognized in polynomial time [3]. We will need the following NP -completeness result.

Corollary 2. *Recognizing decomposable graphs is NP -complete, even if the input is restricted to graphs with maximum degree 4 and minimum degree at least 2.*

Proof. If a graph G with maximum degree 4 has a vertex v of degree 1, then we add to G two new vertices x_v, y_v and make vertices v, x_v and y_v pairwise adjacent. It is easy to see, that the new graph is decomposable if and only if G is decomposable. So, the result follows from Theorem 1. \square

Recall that the *line graph* $L(G)$ of a graph G has the edges of G as its vertices, and two distinct edges of G are adjacent in $L(G)$ if they are incident in G . The relationship between decomposability and having a stable cutset is

Proposition 3. *If $L(G)$ has a stable cutset, then G is decomposable. If G is decomposable and has minimum degree at least 2, then $L(G)$ has a stable cutset.*

Proof. First, let S be a stable cutset of $L(G)$ and let A be a component of $L(G) - S$. Color the vertices of G which are endvertices of an edge in $A \subset E(G)$ with color red, and color the remaining vertices with color blue. Then G is decomposable by this coloring: If the red vertex x has two blue neighbors $y \neq z$, then at least one of

the edges xy, xz is not in $S \subset E(G)$ because S is a stable set in $L(G)$. But then xy or xz would belong to A . This is impossible because both y and z are blue vertices. Similarly, no blue vertex can have two red neighbors.

Second, let G have minimum degree ≥ 2 , and assume that G is decomposable with a suitable coloring in red and blue vertices. Let R and B be the subgraphs of G induced by the red vertices (resp., the blue vertices). Since G is decomposable and has minimum degree ≥ 2 , each of R and B contains at least one edge. Now, the set of all edges in G between R and B form a stable cutset in $L(G)$ separating $E(R)$ and $E(B)$. (Note that the condition on minimum degree is necessary: The star $K_{1,n}$ is decomposable, while its line graph $L(K_{1,n}) = K_n$ does not have a stable cutset.) \square

From Corollary 2 and Proposition 3 we conclude:

Theorem 4. STABLE CUTSET is NP -complete, even if the input is restricted to line graphs with maximum degree at most 6.

It is an open question whether the restriction on maximum degree in Theorem 4 is best possible. However, we remark that STABLE CUTSET is polynomial if the input is restricted to line graphs with maximum degree at most 3.

In [5], Corneil and Fonlupt also asked for the complexity of STABLE CUTSET in perfect graphs: Given a perfect graph G , does G have a stable cutset? The answer follows from the result of Moshi in [15].

Theorem 5 (Moshi [15]). Recognizing decomposable graphs is NP -complete, even if the input is restricted to bipartite graphs of minimum degree 2.

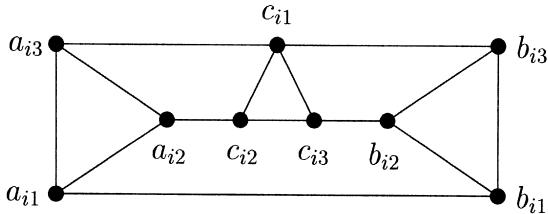
From this theorem and Proposition 3 and the well-known fact that line graphs of bipartite graphs are perfect [2], we can conclude:

Theorem 6. STABLE CUTSET is NP -complete, even if the input is restricted to line graphs of bipartite graphs, and thus to perfect graphs.

3. Stable cutsets in K_4 -free graphs

Let K_n denote a complete graph with n vertices. In this section we show that STABLE CUTSET is NP -complete for K_4 -free graphs. This result is best possible in the sense that for K_3 -free graphs, STABLE CUTSET can be easily solved in linear time: If G is K_3 -free and has at least three vertices, then for every vertex v of G , $\{v\}$ or the neighborhood of v is a stable cutset of G .

Theorem 7. It is NP -complete to decide whether a given K_4 -free graph has a stable cutset.

Fig. 1. The graph $G(C_i)$.

Proof. We shall reduce the following problem, which was proved to be NP -complete by Schaefer [16], to **STABLE CUTSET**.

1-IN-3 3SAT (without negative literals). *Let \mathcal{C} be a collection of m clauses over the set V of n Boolean variables such that every clause has exactly three variables. Is there a truth assignment satisfying \mathcal{C} such that each clause in \mathcal{C} has exactly one true variable?*

For each variable $v \in V$ we take a labelled vertex v . For each clause $C_i = c_{i1} \vee c_{i2} \vee c_{i3}$, where c_{ij} ($1 \leq i \leq m, 1 \leq j \leq 3$) are variables taken from V , define the labelled graph $G(C_i)$ as shown in Fig. 1.

Moreover, we consider a K_3 $R = r_1 r_2 r_3$ and a K_2 $T = t_1 t_2$. We now create the graph $G = G(\mathcal{C})$ from the labelled vertices v ($v \in V$), the graphs $G(C_i)$ ($1 \leq i \leq m$), the graphs R, T , and edges

$$\begin{aligned}
 & vc_{ij} \quad \text{if and only if } c_{ij} \text{ is the variable } v \ (1 \leq i \leq m, 1 \leq j \leq 3), \\
 & vr_1, vr_2 (v \in V), \\
 & r_1 a_{i1}, r_2 b_{i1}, r_3 a_{i1}, r_3 b_{i1} \ (1 \leq i \leq m), \\
 & t_1 c_{i1}, t_1 c_{i2}, t_2 c_{i1}, t_2 c_{i3} \ (1 \leq i \leq m).
 \end{aligned}$$

Clearly, G has no K_4 . We now are going to show that 1-IN-3 3SAT is satisfied if and only if G has a stable cutset.

Suppose that there is a truth assignment satisfying 1-IN-3 3SAT.

Then a stable cutset S of G can be constructed as follows:

(S1) $S := \{v: v \text{ false}\} \cup \{c_{ij}: c_{ij} \text{ true}\}$,

(S2) For $1 \leq i \leq m$:

If $c_{i1} \in S$, put a_{i1}, b_{i2} into S ,

If $c_{i2} \in S$, put a_{i3}, b_{i1} into S ,

If $c_{i3} \in S$, put a_{i1}, b_{i3} into S .

Since exactly one of c_{i1}, c_{i2}, c_{i3} is true, S is a stable set after step (S1). By definition of the $G(C_i)$ s, S remains a stable set after (S2). From (S1) and (S2) it is easy to see that $G - S$ splits into exactly two connected components; one contains R and the other contains T .

Suppose that G has a stable cutset S .

Then a truth assignment for 1-In-3 3SAT can be defined as follows:

v is true if $v \notin S$ and false, otherwise.

We now are going to show that every clause has exactly one true literal by this assignment. First, as S is a stable set, there are at least two vertices r, r' in $R - S$. Also, there is a vertex t in $T - S$. By construction of G ,

every vertex in V is adjacent to r or r' . (1)

Next, it is easy to see that

for each vertex $w \in G(C_i) - S$, there is a path in $(G(C_i) - S) \cup \{r, r', t\}$ connecting w and $\{r, r'\}$, or w and t . (2)

Hence, we can conclude that

there is no path in $G - S$ connecting t and $\{r, r'\}$, (3)

otherwise by (1) and (2), $G - S$ would be connected. (3) implies that

for each i , at least one, hence exactly one of c_{i1}, c_{i2}, c_{i3} belongs to S . (4)

Moreover, for each $v \in V$ with $v = c_{ij}$, we have in G :

$v \in S$ if and only if $c_{ij} \notin S$. (5)

The only if-part of (5) is clear because S is a stable set. To see the if-part, assume that $c_{ij} \notin S$. If $v \notin S$, then there is a path in $G - S$ connecting t and $\{r, r'\}$ with c_{ij} and v as its inner vertices. This contradicts (3).

Now, by (4), every clause has exactly one literal in S . By (5), this literal is the only true variable of that clause by our assignment. The proof of Theorem 7 is complete. □

Remark. By definition, a graph is *k-connected* if it has no cutset of less than k vertices. Our graph G in the proof of Theorem 7 is 3-connected, showing that STABLE CUTSET is \mathbb{NP} -complete for 3-connected graphs. We are going to describe a stronger fact. The *connectivity number* of an incomplete graph is the minimum cardinality of a cutset of that graph; the connectivity number of the complete graph K_n is $n - 1$. Clearly, STABLE CUTSET is easy for graphs with connectivity number at most 1 (separable graphs).

The following simple transformation shows that STABLE CUTSET is already \mathbb{NP} -complete for graphs with connectivity number 2: Consider a 3-connected graph G , and let xy be an arbitrary edge of G . Let G' be the graph obtained from G by taking a new vertex v and adding exactly two new edges vx and vy . Clearly, G' has connectivity number 2 and it is easy to see that G has a stable cutset if and only if G' has a stable cutset.

4. Stable cutsets in HHD-free and brittle graphs

Holes are chordless cycles of length at least five, a *house* is the complement of a chordless path with five vertices, a *domino* is a bipartite graph consisting of a cycle of length six with exactly one chord. Graphs without holes, house and domino are called *HHD-free* graphs; they are introduced in [11], and generalize the well understood triangulated graphs. Notice that by a result due to Dirac [9], no 2-connected triangulated graph has a stable cutset.

A cutset S of a graph G is *minimal* if no proper subset of S is a cutset of G . A set of vertices H of G is called *homogeneous* if H consists of at least two but not all vertices of G and every vertex outside H is adjacent to all vertices or to no vertex in H . A homogeneous set H of G is *maximal* if there is no homogeneous set containing H properly.

Theorem 8. *Let G be a 2-connected HHD-free graph. Every minimal stable cutset in G is a maximal homogeneous set.*

Since the maximal homogeneous sets of a graph can be found in linear time [7,14], Theorem 8 implies that STABLE CUTSET is easy for HHD-free graphs. Moreover, Theorem 8 is interesting for HHD-free graphs in its own right.

Proof of Theorem 8. Let S be a minimal stable cutset in G . It is easy to see that

every vertex of S has a neighbor in every component of $G - S$. (6)

(Actually, (6) holds for every minimal cutset S in an arbitrary graph G .) We first show that S is homogeneous. Suppose to the contrary that S is not a homogeneous set in G . Then there is a component A of $G - S$ and a vertex $a \in A$ such that a is adjacent to a vertex $x \in S$ but not to $y \in S$. Let $a' \in A$ be a neighbor of y (see (6)) such that a path P in A connecting a and a' is of shortest length. Note that $|E(P)| \geq 1$. Consider a component $B \neq A$ of $G - S$ and let b and b' be a neighbor of x and, respectively, a neighbor of y in B (see (6)) such that a path Q connecting b and b' in B is of shortest length. Let a'' be the first neighbor of x on P (from a' to a), and let P' be the subpath of P between a' and a'' . By these choices, P', Q, x and y form a chordless cycle of length $4 + |E(P')| + |E(Q)|$, implying $|E(P')| = |E(Q)| = 0$. Thus $a'' = a'$ and $b = b'$, and therefore $a'xbya'$ is an induced cycle. Now, by considering the path P we get a hole, a domino or a house. This contradiction shows that S must be a homogeneous set. Theorem 8 now follows from the following general observation which is easy to see: If S is a minimal cutset and a homogeneous set as well in an arbitrary graph G , then S is a maximal homogeneous set in G . \square

HHD-free graphs form a particular subclass of the class of brittle graphs introduced by Chvátal and studied by Hoàng and Khouzam [11]. To give the definition of brittle graphs we need some notions.

We write $P_n = v_1 v_2 \dots v_n$ for the chordless path with n vertices v_1, \dots, v_n and $n - 1$ edges $v_i v_{i+1}$ ($1 \leq i \leq n - 1$). The vertices v_1, v_n are the *endpoints*, and the inner vertices v_2, \dots, v_{n-1} are the *midpoints* of the path P_n .

A vertex v in a graph G is called *simplicial* if the neighborhood $N(v)$ in G induces a clique; v is called *co-simplicial* if it is simplicial in the complement \bar{G} of G .

Clearly, a vertex is simplicial if and only if it is not the midpoint of any P_3 . A vertex v in G is then called *semi-simplicial* if v is not a midpoint of any P_4 in G . A graph G is called *brittle* if, for each induced subgraph F of G , F or \bar{F} has a semi-simplicial vertex. In [11] it is proved that every HHD-free graph is brittle. Moreover,

every brittle graph has a simplicial vertex or a co-simplicial vertex or a homogeneous set. (7)

We now are going to show that STABLE CUTSET is easy for brittle graphs. In doing this, we first discuss stable cutset in graphs having a simplicial, respectively, a co-simplicial vertex.

Lemma 9. *Let v be a simplicial vertex in a graph G .*

- (i) *If $\deg(v) = 1$ then G has a stable cutset if and only if $|V| \geq 3$.*
- (ii) *If $\deg(v) \geq 2$ then G has a stable cutset if and only if $G - v$ has a stable cutset.*

Proof. (i) is clear because $N(v)$ is a stable cutset if $|V| \geq 3$. We now prove (ii). Let $c(G)$ denote the number of connected components of G and set $G' := G - v$.

First, suppose S is a stable cutset in G . If $v \notin S$ we get $c(G - S) = c(G' - S)$ since $N(v)$ is a clique and $N(v) \setminus S \neq \emptyset$. Therefore S is a stable cutset in G' , too. Now assume that $v \in S$. Then $N(v) \cap S = \emptyset$ and thus $S' := S \setminus \{v\}$ is a stable cutset in G implying that S' is a stable cutset in G' .

Now, for the other direction let S' be a stable cutset in G' . Since $N(v)$ is a clique and $\deg(v) \geq 2$, $N(v) \setminus S \neq \emptyset$ implying that $c(G - S) = c(G' - S)$. \square

Lemma 10. *Let v be a co-simplicial vertex in a graph G . If G has a stable cutset then*

- (i) *$G - N(v)$ is a stable cutset, or*
- (ii) *$N(w)$ is a stable cutset for some vertex w in $G - N(v) - v$.*

Proof. Note that $G - N(v)$ is a stable set because v is co-simplicial. Thus, if $N(v)$ induces a disconnected graph then $G - N(v)$ is a stable cutset, and we get (i). Therefore we may assume that

$N(v)$ induces a connected graph. (8)

Note that for every $w \in G - N(v) - v$,

$N(w) \subseteq N(v)$. (9)

Thus, if $N(w)$ is a stable set for some vertex w in $G - N(v) - v$, then $N(w)$ is clearly a stable cutset and we get (ii). Therefore, we may assume further that

for every $w \in G - N(v) - v$, $N(w)$ contains an edge (in $N(v)$). (10)

Now consider a stable cutset S of G . (8) and (9) imply that $v \notin S$. By (10), every vertex w outside S is connected to v . Thus $G - S$ is connected, a contradiction. We have shown that (i) or (ii) must hold. \square

Next, we consider the reduction of homogeneous sets.

Lemma 11. *Let $G = (V, E)$ be a connected graph and H a proper homogeneous set in G .*

- (i) *Let $h \in H$. If H is additionally stable then G has a stable cutset if and only if $G - (H - h)$ has a stable cutset.*
- (ii) *If H contains an edge h_1h_2 then G has a stable cutset if and only if $G - (H \setminus \{h_1, h_2\})$ has a stable cutset.*

Proof. (i) Let S be a stable cutset in G . If $H \subseteq S$ then $(S \setminus H) \cup \{h\}$ is a stable cutset in $G' := G - (H - h)$. If $H \not\subseteq S$ then $S \setminus H$ is a stable cutset in G , too, yielding that $S \setminus H$ is a stable cutset in G' . For the other direction let S' be a stable cutset in G' . If $h \notin S'$ then clearly S' is a stable cutset in G , too. Otherwise, since H is stable $(S' \setminus \{h\}) \cup H$ is a stable cutset in G .

(ii) If S is a stable cutset in G then $S \setminus H$ is a stable cutset in $G' := G - (H \setminus \{h_1, h_2\})$. If S' is a stable cutset in G' then $S' \setminus \{h_1, h_2\}$ is a stable cutset in G . \square

As a consequence of the Lemmas 9–11 we can now prove

Theorem 12. STABLE CUTSET can be solved in polynomial time for brittle graphs.

Proof. Let G be a brittle graph. If G contains a simplicial vertex or a homogeneous set which is not an edge we can reduce in polynomial time the problem to a smaller brittle graph (see Lemmas 9 and 11). If G contains a co-simplicial vertex then we are done by Lemma 10. Therefore, we suppose that G contains no simplicial and no co-simplicial vertices and that every homogeneous set induces an edge.

Let G' be the graph obtained from G by contracting every homogeneous set to a representing vertex. Clearly, G' contains no homogeneous set and is an induced subgraph of G . In particular, G' is brittle. By (7), G' must contain a simplicial or co-simplicial vertex. Since a simplicial vertex in G' is also simplicial in G ,

there exists a co-simplicial vertex v in G' .

Now, we show that if G has a stable cutset then one of the following sets must be a stable cutset in G :

- (a) $N(w)$ for some vertex $w \in G - N(v) - v$, or
- (b) $M \cup \{v\}$ where M consists of all vertices in $G - N(v) - v$ not contained in a homogeneous set and moreover M contains one representative from every homogeneous set.

The proof is similar to that of Lemma 10. \square

5. Stable cutsets in hole-free graphs and related classes

In this section we shall show that STABLE CUTSET is still easy for a larger class than the brittle graphs, namely for the class of hole-free graphs.

Let us call a graph k -chordal if it has no chordless cycle of length at least k . Thus triangulated graphs are exactly the 4-chordal graphs, and hole-free graphs are exactly the 5-chordal graphs. Note that k -chordality can be recognized in polynomial time for every fixed k [17]. By our result, it should be interesting to investigate the complexity of STABLE CUTSET for k -chordal graphs for fixed $k \geq 6$. For 6-chordal graphs we get the following result.

For a subset $M \subseteq V$ we denote by $N(M)$ the neighborhood of M in G ; i.e., all vertices from $V \setminus M$ which have a neighbor in M .

Lemma 13. *Let G be a connected 6-chordal graph. If G has a stable cutset then it has a stable cutset that is the intersection of the neighborhoods of two cliques.*

Proof. Let S be a minimal stable cutset in G , and A and B two different connected components of $G - S$. Let C be a clique from A with maximum number of neighbors in S . We are going to show that $S \subseteq N(C)$. Assuming the contrary, there exists a vertex $y \in S$ that has no neighbor in C . Recall that, by the minimality of the cutset S , every vertex from S has a neighbor in A and a neighbor in B . Let $a_0 \in A - C$ be a neighbor of y such that a path P in A connecting a_0 and C is of shortest length $k \geq 1$. Write $P = a_0a_1 \dots a_k$ with $a_k \in C$ and $a_i \notin C$ for all $i \neq k$.

Claim. $k = 1$.

Proof of the Claim. By the choice of C , C has a neighbor $x \in S$ such that x is nonadjacent to both a_0 and a_1 (otherwise, the clique $\{a_0, a_1\}$ from A would have more neighbors in S than C). Let a be a vertex from C adjacent to x , and let b be a neighbor of x in B and b' be a neighbor of y in B such that a path P' in B connecting b and b' is of shortest length; $b = b'$ is possible. Note, that x cannot be adjacent to any vertex of P . Otherwise, let i be minimal such that xa_i is an edge. Then $i \geq 2$ and $xa_i \dots a_0yP'x$ is an induced cycle of length $i + 4 + |E(P')| \geq 6$, a contradiction. Now, let j be minimal such that a is adjacent to a_j . By the choice of P , $j = k - 1$ or $j = k$, hence the induced

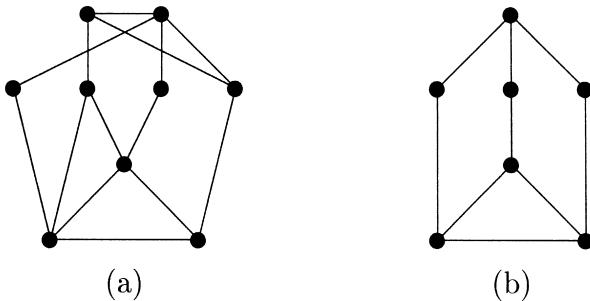


Fig. 2. Two special 6-chordal graphs.

cycle $xa a_j \dots a_0 y P' x$ is of length $j + 5 + |E(P')| \geq k + 4$. Since G is 6-chordal, $k = 1$. The claim is proved. \square

Thus $P = a_0 a_1$ with $a_0 \notin C$ and $a_1 \in C$. But then

$$Q := \{a_0, a_1\} \cup \{a \in C : \exists x \in N_S(a) \text{ such that } x \text{ is nonadjacent to } a_0 \text{ and } a_1\}$$

is a clique (otherwise G would have an induced cycle of length ≥ 6). By definition of Q , every neighbor of C in S is also a neighbor of Q . Since $y \notin N(C)$, Q therefore has more neighbors in S than C . This contradiction proves $S \subseteq N(C)$.

By symmetry, a clique C' from B with maximum number of neighbors in S satisfies $S \subseteq N(C')$. Since S is a cutset, and C and C' are in different connected components of $G - S$, $S = N(C) \cap N(C')$. \square

From this lemma we immediately conclude

Theorem 14. STABLE CUTSET can be solved in polynomial time for 6-chordal graphs with constant bounded clique size, in particular for 6-chordal K_4 -free graphs.

The graph (a) from Fig. 2 is a 6-chordal graph with a stable cutset of the form $N(K_3) \cap N(K_2)$.

Theorem 15. Let $G = (V, E)$ be a connected 6-chordal graph which does not contain an induced subgraph isomorphic to the graph (b) from Fig 2. If G has a stable cutset then it has a stable cutset that is the intersection of the neighborhoods of two elements from $V \cup E$.

Proof. Let S be a minimal stable cutset in G , and A and B two different connected components of $G - S$. Since G is a 6-chordal graph there exist two cliques $C \subseteq A$ and $C' \subseteq B$ such that $N(C) \cap N(C') = S$. We may choose C and C' minimal by inclusion. Then every vertex a from C has a neighbor x_a in S (we call it a *personal neighbor*) that is adjacent only to a from C . Now let $|C| \geq 3$ and a, b, c be three vertices of C with

personal neighbors x_a, x_b, x_c in S . We have $x_vv \in E$ and $x_vu \notin E$ for $v, u \in \{a, b, c\}$, $u \neq v$. Since G is a 6-chordal graph as before we can show that every two vertices from $\{x_a, x_b, x_c\}$ have a common neighbor in B . If we assume that there is no common neighbor of all three vertices in B then we will get an induced cycle of length 6. Hence, there must be a common neighbor w of x_a, x_b, x_c in B and we have constructed an induced subgraph of G isomorphic to the graph (b) from Fig. 2. \square

Since the graph (b) in Fig. 2 contains a chordless cycle of length 5 we derive

Corollary 16. *Let G be a connected hole-free graph. If G has a stable cutset then it has a stable cutset that is the intersection of the neighborhoods of two vertices. Thus, STABLE CUTSET can be solved in polynomial time for hole-free graphs.*

A graph G is called (k, l) -chordal (see [1]) if every cycle of length greater than $k - 1$ has at least l chords. Since the graph (b) in Fig. 2 contains a cycle of length 6 with exactly one chord we conclude

Corollary 17. *STABLE CUTSET can be solved in polynomial time for $(6, 2)$ -chordal graphs.*

A set of three vertices of a graph is called an *asteroidal triple* [13] if every two of them can be connected by a path avoiding the closed neighborhood of the third vertex. A graph G is called *AT-free* [6] if it contains no asteroidal triples. Since the graph (b) in Fig. 2 contains an asteroidal triple and AT-free graphs are 6-chordal we have the following

Corollary 18. *STABLE CUTSET can be solved in polynomial time for AT-free graphs.*

We have learnt from [10] that in [12] the NP -completeness of STABLE CUTSET has been derived from Chvátal's result on decomposable graphs.

References

- [1] G. Ausiello, A. D'Atri, M. Moscarini, Chordality properties on graphs and minimal conceptual connections in semantic data models, *J. Comput. System Sci.* 33 (1986) 179–202.
- [2] A. Brandstädt, V.B. Le, J.P. Spinrad, *Graph Classes: A Survey*, SIAM Monographs on Discrete Mathematics and Applications, Vol. 3, SIAM, Philadelphia, PA, 1999.
- [3] V. Chvátal, Recognizing decomposable graphs, *J. Graph Theory* 8 (1984) 51–53.
- [4] V. Chvátal et al., Collection of problems concerning perfect graphs, *Dimacs Workshop on Perfect Graphs*, Princeton, 1993, <ftp://dimacs.rutgers.edu/pub/perfect/problems.tex>.
- [5] D.G. Corneil, J. Fonlupt, Stable set bonding in perfect graphs and parity graphs, *J. Combin. Theory Ser. B* 59 (1993) 1–14.
- [6] D.G. Corneil, S. Olariu, L. Stewart, Asteroidal triple-free graphs, *SIAM J. Discrete Math.* 10 (1997) 399–430.
- [7] A. Cournier, M. Habib, A new linear time algorithm for modular decomposition, LIRMM, University Montpellier, 1995.

- [8] W.H. Cunningham, personal communication, May 1998.
- [9] G. Dirac, On rigid circuit graphs, *Abh. Math. Sem. Univ. Hamburg* 25 (1961) 71–76.
- [10] T. Feder, P. Hell, S. Klein, R. Motwani, Complexity of graph partition problems, preprint, 1999.
- [11] C.T. Hoàng, N. Khouzam, On brittle graphs, *J. Graph Theory* 12 (1988) 391–404.
- [12] S. Klein, C.M.H. de Figueiredo, The NP-completeness of multi-partite cutset testing, *Congr. Numer.* 119 (1996) 217–222.
- [13] C.G. Lekkerkerker, J.Ch. Boland, Representation of a finite graph by a set of intervals on the real line, *Fund. Math.* 51 (1962) 45–64.
- [14] R.M. McConnell, J. Spinrad, Linear-time modular decomposition and efficient transitive orientation of comparability graphs, *Fifth Annual ACM-SIAM Symposium on Discrete Algorithms*, 1994, pp. 536–545, *Discrete Math.* 201 (1999) 189–241.
- [15] A.M. Moshi, Matching cutsets in graphs, *J. Graph Theory* 13 (1989) 527–536.
- [16] T.J. Schaefer, The complexity of the satisfiability problem, *Proceedings of the 10th Annual ACM Symposium on Theory of Computing*, 1978, pp. 216–226.
- [17] J. Spinrad, Finding large holes, *Inform. Process. Lett.* 39 (1991) 227–229.
- [18] A. Tucker, Coloring graphs with stable cutsets, *J. Combin. Theory Ser. B* 34 (1983) 258–267.
- [19] S.H. Whitesides, An algorithm for finding clique cut-sets, *Inform. Process. Lett.* 12 (1981) 31–32.