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Abstract

We answer a question of Corneil and Fonlupt by showing that deciding whether a graph has
a stable cutset is NP-complete even for restricted graph classes. Some e�ciently solvable cases
will be discussed, too. ? 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In a graph, a stable set (a clique) is a set of pairwise non-adjacent (adjacent)
vertices. A cutset is a set of vertices whose deletion results in a disconnected graph. A
stable cutset is a cutset which is also a stable set. Stable cutsets in graphs have been
discussed by Tucker [18], Corneil and Fonlupt [5] in connection with perfect graphs.
In [5], Corneil and Fonlupt proposed the following problem.
STABLE CUTSET: Given graph G. Does G have a stable cutset?
This problem is also mentioned by Chv�atal et al. in [4]. In this note we prove that

STABLE CUTSET is NP-complete even for K4-free graphs and for graphs with connectiv-
ity number 2. Our results are best possible in the sense that STABLE CUTSET trivially can
be solved in linear time for K3-free graphs and for graphs with connectivity number
at most 1. After writing a �rst version of this note, Cunningham [8] informed us that
NP-completeness of the STABLE CUTSET problem (for line graphs) might be derived
also from the result of Chv�atal [3] on decomposable graphs. We present this in Sec-
tion 2. In Sections 4 and 5, we shall discuss STABLE CUTSET in graphs without long
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induced cycles. Among them are HHD-free graphs, brittle graphs, hole-free graphs and
AT-free graphs. It turns out that for all these graph classes, STABLE CUTSET can be
solved in polynomial time. (For more information on graph classes considered here,
see the survey [2].)
Notice that the related CLIQUE CUTSET problem can be solved in polynomial time;

see for instance [19].

2. Stable cutsets in line graphs

In order to make the paper self-contained, we are going to describe a consequence
of Chv�atal’s results on decomposable graphs to the STABLE CUTSET problem. A graph is
called decomposable if its vertices can be colored with two colors in such a way that
each color appears on at least one vertex and each vertex v has at most one neighbor
having a di�erent color from v. In other words, a graph is decomposable if its vertices
can be partitioned into two nonempty parts such that the edges connecting vertices
from di�erent parts form an induced matching.

Theorem 1 (Chv�atal [3]). Recognizing decomposable graphs is NP-complete; even if
the input is restricted to graphs with maximum degree 4.

Note that this result is best possible in the sense that decomposable graphs with
maximum degree at most 3 can be recognized in polynomial time [3]. We will need
the following NP-completeness result.

Corollary 2. Recognizing decomposable graphs is NP-complete; even if the input is
restricted to graphs with maximum degree 4 and minimum degree at least 2.

Proof. If a graph G with maximum degree 4 has a vertex v of degree 1, then we add
to G two new vertices xv; yv and make vertices v; xv and yv pairwise adjacent. It is
easy to see, that the new graph is decomposable if and only if G is decomposable. So,
the result follows from Theorem 1.

Recall that the line graph L(G) of a graph G has the edges of G as its vertices, and
two distinct edges of G are adjacent in L(G) if they are incident in G. The relationship
between decomposability and having a stable cutset is

Proposition 3. If L(G) has a stable cutset; then G is decomposable. If G is decom-
posable and has minimum degree at least 2; then L(G) has a stable cutset.

Proof. First, let S be a stable cutset of L(G) and let A be a component of L(G)− S.
Color the vertices of G which are endvertices of an edge in A⊂E(G) with color
red, and color the remaining vertices with color blue. Then G is decomposable by
this coloring: If the red vertex x has two blue neighbors y 6= z, then at least one of
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the edges xy; xz is not in S ⊂E(G) because S is a stable set in L(G). But then xy
or xz would belong to A. This is impossible because both y and z are blue vertices.
Similarly, no blue vertex can have two red neighbors.
Second, let G have minimum degree ¿2, and assume that G is decomposable with

a suitable coloring in red and blue vertices. Let R and B be the subgraphs of G
induced by the red vertices (resp., the blue vertices). Since G is decomposable and
has minimum degree ¿2, each of R and B contains at least one edge. Now, the set
of all edges in G between R and B form a stable cutset in L(G) separating E(R)
and E(B). (Note that the condition on minimum degree is necessary: The star K1; n is
decomposable, while its line graph L(K1; n) = Kn does not have a stable cutset.)

From Corollary 2 and Proposition 3 we conclude:

Theorem 4. STABLE CUTSET is NP-complete; even if the input is restricted to line
graphs with maximum degree at most 6.

It is an open question whether the restriction on maximum degree in Theorem 4 is
best possible. However, we remark that STABLE CUTSET is polynomial if the input is
restricted to line graphs with maximum degree at most 3.
In [5], Corneil and Fonlupt also asked for the complexity of STABLE CUTSET in perfect

graphs: Given a perfect graph G, does G have a stable cutset? The answer follows
from the result of Moshi in [15].

Theorem 5 (Moshi [15]). Recognizing decomposable graphs is NP-complete; even if
the input is restricted to bipartite graphs of minimum degree 2.

From this theorem and Proposition 3 and the well-known fact that line graphs of
bipartite graphs are perfect [2], we can conclude:

Theorem 6. STABLE CUTSET is NP-complete; even if the input is restricted to line
graphs of bipartite graphs; and thus to perfect graphs.

3. Stable cutsets in K4-free graphs

Let Kn denote a complete graph with n vertices. In this section we show that STABLE
CUTSET is NP-complete for K4-free graphs. This result is best possible in the sense that
for K3-free graphs, STABLE CUTSET can be easily solved in linear time: If G is K3-free
and has at least three vertices, then for every vertex v of G, {v} or the neighborhood
of v is a stable cutset of G.

Theorem 7. It is NP-complete to decide whether a given K4-free graph has a stable
cutset.
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Fig. 1. The graph G(Ci).

Proof. We shall reduce the following problem, which was proved to be NP-complete
by Schaefer [16], to STABLE CUTSET.
1-IN-3 3SAT (without negative literals). Let C be a collection of m clauses over the

set V of n Boolean variables such that every clause has exactly three variables. Is
there a truth assignment satisfying C such that each clause in C has exactly one true
variable?
For each variable v ∈ V we take a labelled vertex v. For each clause Ci=ci1∨ci2∨ci3,

where cij (16i6m; 16j63) are variables taken from V , de�ne the labelled graph
G(Ci) as shown in Fig. 1.
Moreover, we consider a K3 R= r1r2r3 and a K2 T = t1t2. We now create the graph

G=G(C) from the labelled vertices v (v ∈ V ), the graphs G(Ci) (16i6m), the graphs
R; T , and edges

vcij if and only if cij is the variable v (16i6m; 16j63);

vr1; vr2(v ∈ V );
r1ai1; r2bi1; r3ai1; r3bi1 (16i6m);

t1ci1; t1ci2; t2ci1; t2ci3 (16i6m):

Clearly, G has no K4. We now are going to show that 1-IN-3 3SAT is satis�ed if and
only if G has a stable cutset.
Suppose that there is a truth assignment satisfying 1-In-3 3SAT.
Then a stable cutset S of G can be constructed as follows:
(S1) S:={v:v false} ∪ {cij:cij true},
(S2) For 16i6m:

If ci1 ∈ S, put ai1; bi2 into S,
If ci2 ∈ S, put ai3; bi1 into S,
If ci3 ∈ S, put ai1; bi3 into S.

Since exactly one of ci1; ci2; ci3 is true, S is a stable set after step (S1). By de�nition
of the G(Ci)s, S remains a stable set after (S2). From (S1) and (S2) it is easy to see
that G− S splits into exactly two connected components; one contains R and the other
contains T .
Suppose that G has a stable cutset S.
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Then a truth assignment for 1-IN-3 3SAT can be de�ned as follows:

v is true if v 6∈ S and false; otherwise:
We now are going to show that every clause has exactly one true literal by this
assignment. First, as S is a stable set, there are at least two vertices r; r′ in R − S.
Also, there is a vertex t in T − S. By construction of G,

every vertex in V is adjacent to r or r′: (1)

Next, it is easy to see that

for each vertex w ∈ G(Ci)− S; there is a path in (G(Ci)− S)∪
{r; r′; t} connecting w and {r; r′}; or w and t:

(2)

Hence, we can conclude that

there is no path in G − S connecting t and {r; r′}; (3)

otherwise by (1) and (2), G − S would be connected. (3) implies that
for each i; at least one; hence exactly one of ci1; ci2; ci3 belongs to S: (4)

Moreover, for each v ∈ V with v= cij, we have in G:

v ∈ S if and only if cij 6∈ S: (5)

The only if-part of (5) is clear because S is a stable set. To see the if-part, assume
that cij 6∈ S. If v 6∈ S, then there is a path in G − S connecting t and {r; r′} with cij
and v as its inner vertices. This contradicts (3).
Now, by (4), every clause has exactly one literal in S. By (5), this literal is the only

true variable of that clause by our assignment. The proof of Theorem 7 is complete.

Remark. By de�nition, a graph is k-connected if it has no cutset of less than k vertices.
Our graph G in the proof of Theorem 7 is 3-connected, showing that STABLE CUTSET
is NP-complete for 3-connected graphs. We are going to describe a stronger fact. The
connectivity number of an incomplete graph is the minimum cardinality of a cutset of
that graph; the connectivity number of the complete graph Kn is n−1. Clearly, STABLE
CUTSET is easy for graphs with connectivity number at most 1 (separable graphs).

The following simple transformation shows that STABLE CUTSET is already NP-
complete for graphs with connectivity number 2: Consider a 3-connected graph G,
and let xy be an arbitrary edge of G. Let G′ be the graph obtained from G by taking
a new vertex v and adding exactly two new edges vx and vy. Clearly, G′ has connec-
tivity number 2 and it is easy to see that G has a stable cutset if and only if G′ has
a stable cutset.
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4. Stable cutsets in HHD-free and brittle graphs

Holes are chordless cycles of length at least �ve, a house is the complement of a
chordless path with �ve vertices, a domino is a bipartite graph consisting of a cycle of
length six with exactly one chord. Graphs without holes, house and domino are called
HHD-free graphs; they are introduced in [11], and generalize the well understood
triangulated graphs. Notice that by a result due to Dirac [9], no 2-connected triangulated
graph has a stable cutset.
A cutset S of a graph G is minimal if no proper subset of S is a cutset of G. A

set of vertices H of G is called homogeneous if H consists of at least two but not all
vertices of G and every vertex outside H is adjacent to all vertices or to no vertex in
H . A homogeneous set H of G is maximal if there is no homogeneous set containing
H properly.

Theorem 8. Let G be a 2-connected HHD-free graph. Every minimal stable cutset
in G is a maximal homogeneous set.

Since the maximal homogeneous sets of a graph can be found in linear time [7,14],
Theorem 8 implies that STABLE CUTSET is easy for HHD-free graphs. Moreover, Theo-
rem 8 is interesting for HHD-free graphs in its own right.

Proof of Theorem 8. Let S be a minimal stable cutset in G. It is easy to see that

every vertex of S has a neighbor in every component of G − S: (6)

(Actually, (6) holds for every minimal cutset S in an arbitrary graph G.) We �rst
show that S is homogeneous. Suppose to the contrary that S is not a homogeneous set
in G. Then there is a component A of G−S and a vertex a ∈ A such that a is adjacent
to a vertex x ∈ S but not to y ∈ S. Let a′ ∈ A be a neighbor of y (see (6)) such that
a path P in A connecting a and a′ is of shortest length. Note that |E(P)|¿1. Consider
a component B 6= A of G− S and let b and b′ be a neighbor of x and, respectively, a
neighbor of y in B (see (6)) such that a path Q connecting b and b′ in B is of shortest
length. Let a′′ be the �rst neighbor of x on P (from a′ to a), and let P′ be the subpath
of P between a′ and a′′. By these choices, P′; Q; x and y form a chordless cycle of
length 4 + |E(P′)|+ |E(Q)|, implying |E(P′)|= |E(Q)|= 0. Thus a′′ = a′ and b= b′,
and therefore a′xbya′ is an induced cycle. Now, by considering the path P we get a
hole, a domino or a house. This contradiction shows that S must be a homogeneous
set. Theorem 8 now follows from the following general observation which is easy to
see: If S is a minimal cutset and a homogeneous set as well in an arbitrary graph G,
then S is a maximal homogeneous set in G.

HHD-free graphs form a particular subclass of the class of brittle graphs introduced
by Chv�atal and studied by Ho�ang and Khouzam [11]. To give the de�nition of brittle
graphs we need some notions.
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We write Pn = v1v2 : : : vn for the chordless path with n vertices v1; : : : ; vn and n− 1
edges vivi+1 (16i6n−1). The vertices v1, vn are the endpoints, and the inner vertices
v2; : : : ; vn−1 are the midpoints of the path Pn.
A vertex v in a graph G is called simplicial if the neighborhood N (v) in G induces

a clique; v is called co-simplicial if it is simplicial in the complement �G of G.
Clearly, a vertex is simplicial if and only if it is not the midpoint of any P3. A vertex

v in G is then called semi-simplicial if v is not a midpoint of any P4 in G. A graph
G is called brittle if, for each induced subgraph F of G, F or �F has a semi-simplicial
vertex. In [11] it is proved that every HHD-free graph is brittle. Moreover,

every brittle graph has a simplicial vertex or a co-simplicial
vertex or a homogeneous set: (7)

We now are going to show that STABLE CUTSET is easy for brittle graphs. In doing this,
we �rst discuss stable cutset in graphs having a simplicial, respectively, a co-simplicial
vertex.

Lemma 9. Let v be a simplicial vertex in a graph G.
(i) If deg(v) = 1 then G has a stable cutset if and only if |V |¿3.
(ii) If deg(v)¿2 then G has a stable cutset if and only if G− v has a stable cutset.

Proof. (i) is clear because N (v) is a stable cutset if |V |¿3. We now prove (ii). Let
c(G) denote the number of connected components of G and set G′:=G − v.
First, suppose S is a stable cutset in G. If v 6∈ S we get c(G− S) = c(G′ − S) since

N (v) is a clique and N (v)\S 6= ∅. Therefore S is a stable cutset in G′, too. Now
assume that v ∈ S. Then N (v) ∩ S = ∅ and thus S ′:=S \{v} is a stable cutset in G
implying that S ′ is a stable cutset in G′.
Now, for the other direction let S ′ be a stable cutset in G′. Since N (v) is a clique

and deg(v)¿2, N (v)\S 6= ∅ implying that c(G − S) = c(G′ − S).

Lemma 10. Let v be a co-simplicial vertex in a graph G. If G has a stable cutset
then
(i) G − N (v) is a stable cutset; or
(ii) N (w) is a stable cutset for some vertex w in G − N (v)− v.

Proof. Note that G − N (v) is a stable set because v is co-simplicial. Thus, if N (v)
induces a disconnected graph then G−N (v) is a stable cutset, and we get (i). Therefore
we may assume that

N (v) induces a connected graph: (8)

Note that for every w ∈ G − N (v)− v,

N (w)⊆N (v): (9)
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Thus, if N (w) is a stable set for some vertex w in G − N (v) − v, then N (w) is
clearly a stable cutset and we get (ii). Therefore, we may assume further that

for every w ∈ G − N (v)− v; N (w) contains an edge (in N (v)): (10)

Now consider a stable cutset S of G. (8) and (9) imply that v 6∈ S. By (10), every
vertex w outside S is connected to v. Thus G − S is connected, a contradiction. We
have shown that (i) or (ii) must hold.

Next, we consider the reduction of homogeneous sets.

Lemma 11. Let G = (V; E) be a connected graph and H a proper homogeneous set
in G.
(i) Let h ∈ H . If H is additionally stable then G has a stable cutset if and only if

G − (H − h) has a stable cutset.
(ii) If H contains an edge h1h2 then G has a stable cutset if and only if G −

(H \{h1; h2}) has a stable cutset.

Proof. (i) Let S be a stable cutset in G. If H ⊆ S then (S\H)∪ {h} is a stable cutset
in G′:=G − (H − h). If H * S then S \H is a stable cutset in G, too, yielding that
S \ H is a stable cutset in G′. For the other direction let S ′ be a stable cutset in G′.
If h 6∈ S ′ then clearly S ′ is a stable cutset in G, too. Otherwise, since H is stable
(S ′\{h}) ∪ H is a stable cutset in G.
(ii) If S is a stable cutset in G then S \H is a stable cutset in G′:=G−(H \{h1; h2}).

If S ′ is a stable cutset in G′ then S ′ \ {h1; h2} is a stable cutset in G.

As a consequence of the Lemmas 9–11 we can now prove

Theorem 12. STABLE CUTSET can be solved in polynomial time for brittle graphs.

Proof. Let G be a brittle graph. If G contains a simplicial vertex or a homogeneous
set which is not an edge we can reduce in polynomial time the problem to a smaller
brittle graph (see Lemmas 9 and 11). If G contains a co-simplicial vertex then we
are done by Lemma 10. Therefore, we suppose that G contains no simplicial and no
co-simplicial vertices and that every homogeneous set induces an edge.
Let G′ be the graph obtained from G by contracting every homogeneous set to a rep-

resenting vertex. Clearly, G′ contains no homogeneous set and is an induced subgraph
of G. In particular, G′ is brittle. By (7), G′ must contain a simplicial or co-simplicial
vertex. Since a simplicial vertex in G′ is also simplicial in G,

there exists a co-simplicial vertex v in G′:
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Now, we show that if G has a stable cutset then one of the following sets must be a
stable cutset in G:
(a) N (w) for some vertex w ∈ G − N (v)− v, or
(b) M ∪{v} where M consists of all vertices in G−N (v)−v not contained in a homo-

geneous set and moreover M contains one representative from every homogeneous
set.

The proof is similar to that of Lemma 10.

5. Stable cutsets in hole-free graphs and related classes

In this section we shall show that STABLE CUTSET is still easy for a larger class than
the brittle graphs, namely for the class of hole-free graphs.
Let us call a graph k-chordal if it has no chordless cycle of length at least k. Thus

triangulated graphs are exactly the 4-chordal graphs, and hole-free graphs are exactly
the 5-chordal graphs. Note that k-chordality can be recognized in polynomial time for
every �xed k [17]. By our result, it should be interesting to investigate the complexity
of STABLE CUTSET for k-chordal graphs for �xed k¿6. For 6-chordal graphs we get the
following result.
For a subset M ⊆V we denote by N (M) the neighborhood of M in G; i.e., all

vertices from V \M which have a neighbor in M .

Lemma 13. Let G be a connected 6-chordal graph. If G has a stable cutset then it
has a stable cutset that is the intersection of the neighborhoods of two cliques.

Proof. Let S be a minimal stable cutset in G, and A and B two di�erent connected
components of G−S. Let C be a clique from A with maximum number of neighbors in
S. We are going to show that S ⊆N (C). Assuming the contrary, there exists a vertex
y ∈ S that has no neighbor in C. Recall that, by the minimality of the cutset S, every
vertex from S has a neighbor in A and a neighbor in B. Let a0 ∈ A−C be a neighbor
of y such that a path P in A connecting a0 and C is of shortest length k¿1. Write
P = a0a1 : : : ak with ak ∈ C and ai 6∈ C for all i 6= k.

Claim. k = 1.

Proof of the Claim. By the choice of C, C has a neighbor x ∈ S such that x is
nonadjacent to both a0 and a1 (otherwise, the clique {a0; a1} from A would have more
neighbors in S than C). Let a be a vertex from C adjacent to x, and let b be a neighbor
of x in B and b′ be a neighbor of y in B such that a path P′ in B connecting b and b′

is of shortest length; b=b′ is possible. Note, that x cannot be adjacent to any vertex of
P. Otherwise, let i be minimal such that xai is an edge. Then i¿2 and xai : : : a0yP′x is
an induced cycle of length i+ 4+ |E(P′)|¿6, a contradiction. Now, let j be minimal
such that a is adjacent to aj. By the choice of P, j= k−1 or j= k, hence the induced
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Fig. 2. Two special 6-chordal graphs.

cycle xaaj : : : a0yP′x is of length j + 5 + |E(P′)|¿k + 4. Since G is 6-chordal, k = 1.
The claim is proved.

Thus P = a0a1 with a0 6∈ C and a1 ∈ C. But then
Q:={a0; a1} ∪ {a ∈ C: ∃x ∈ NS(a) such that x is nonadjacent to a0 and a1}

is a clique (otherwise G would have an induced cycle of length ¿6). By de�nition
of Q, every neighbor of C in S is also a neighbor of Q. Since y 6∈ N (C), Q therefore
has more neighbors in S than C. This contradiction proves S ⊆N (C).
By symmetry, a clique C′ from B with maximum number of neighbors in S satis�es

S ⊆N (C′). Since S is a cutset, and C and C′ are in di�erent connected components
of G − S, S = N (C) ∩ N (C′).

From this lemma we immediately conclude

Theorem 14. STABLE CUTSET can be solved in polynomial time for 6-chordal graphs
with constant bounded clique size; in particular for 6-chordal K4-free graphs.

The graph (a) from Fig. 2 is a 6-chordal graph with a stable cutset of the form
N (K3) ∩ N (K2).

Theorem 15. Let G = (V; E) be a connected 6-chordal graph which does not contain
an induced subgraph isomorphic to the graph (b) from Fig 2. If G has a stable
cutset then it has a stable cutset that is the intersection of the neighborhoods of two
elements from V ∪ E.

Proof. Let S be a minimal stable cutset in G, and A and B two di�erent connected
components of G− S. Since G is a 6-chordal graph there exist two cliques C ⊆A and
C′ ⊆B such that N (C)∩N (C′) = S. We may choose C and C′ minimal by inclusion.
Then every vertex a from C has a neighbor xa in S (we call it a personal neighbor)
that is adjacent only to a from C. Now let |C|¿3 and a; b; c be three vertices of C with
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personal neighbors xa; xb; xc in S. We have xvv ∈ E and xvu 6∈ E for v; u ∈ {a; b; c},
u 6= v. Since G is a 6-chordal graph as before we can show that every two vertices
from {xa; xb; xc} have a common neighbor in B. If we assume that there is no common
neighbor of all three vertices in B then we will get an induced cycle of length 6.
Hence, there must be a common neighbor w of xa; xb; xc in B and we have constructed
an induced subgraph of G isomorphic to the graph (b) from Fig. 2.

Since the graph (b) in Fig. 2 contains a chordless cycle of length 5 we derive

Corollary 16. Let G be a connected hole-free graph. If G has a stable cutset then
it has a stable cutset that is the intersection of the neighborhoods of two vertices.
Thus; STABLE CUTSET can be solved in polynomial time for hole-free graphs.

A graph G is called (k; l)-chordal (see [1]) if every cycle of length greater than
k − 1 has at least l chords. Since the graph (b) in Fig. 2 contains a cycle of length 6
with exactly one chord we conclude

Corollary 17. STABLE CUTSET can be solved in polynomial time for (6; 2)-chordal
graphs.

A set of three vertices of a graph is called an asteroidal triple [13] if every two of
them can be connected by a path avoiding the closed neighborhood of the third vertex.
A graph G is called AT-free [6] if it contains no asteroidal triples. Since the graph
(b) in Fig. 2 contains an asteroidal triple and AT-free graphs are 6-chordal we have
the following

Corollary 18. STABLE CUTSET can be solved in polynomial time for AT-free graphs.

We have learnt from [10] that in [12] the NP-completeness of STABLE CUTSET has
been derived from Chv�atal’s result on decomposable graphs.
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