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SPLIT-PERFECT GRAPHS:
CHARACTERIZATIONS AND ALGORITHMIC USE*

ANDREAS BRANDSTADT! AND VAN BANG LEf

Abstract. Two graphs G and H with the same vertex set V' are Pj-isomorphic if every four
vertices {a,b,c,d} C V induce a chordless path (denoted by Py) in G if and only if they induce a
Py in H. We call a graph split-perfect if it is Ps-isomorphic to a split graph (i.e., a graph being
partitionable into a clique and a stable set). This paper characterizes the new class of split-perfect
graphs using the concepts of homogeneous sets and p-connected graphs and leads to a linear time
recognition algorithm for split-perfect graphs, as well as efficient algorithms for classical optimization
problems on split-perfect graphs based on the primeval decomposition of graphs. The optimization
results considerably extend previous ones on smaller classes such as Pj-sparse graphs, Py-lite graphs,
Py-laden graphs, and (7,3)-graphs. Moreover, split-perfect graphs form a new subclass of brittle
graphs containing the superbrittle graphs for which a new characterization is obtained leading to
linear time recognition.
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1. Introduction. Graph decomposition is a powerful tool in designing efficient
algorithms for basic algorithmic graph problems such as maximum independent set,
minimum coloring, and many others. Recently, the modular, the primeval, and the
homogeneous decomposition of graphs attracted much attention. The last two types
of decomposition were introduced by Jamison and Olariu [42] (see also [5]) and are
based on their structure theorem and the concept of Pj-connectedness. A P, is an
induced path on four vertices. A graph G = (V, E) is Py-connected (p-connected for
short) if, for every partition Vi, V5 of V' with nonempty Vi, Vo, there is a Py of G with
vertices in V7 and in Vb, called crossing Py. It is easy to see that every graph has
a unique partition into maximal induced p-connected subgraphs, called p-connected
components (p-components for short), and vertices belonging to no Pj.

We follow this line of research by introducing and characterizing a new class
of graphs—the split-perfect graphs—for which the p-connected components have a
simple structure generalizing split graphs. As usual, a graph is called a split graph if
its vertex set can be partitioned into a clique and a stable set.

The p-connected components represent the nontrivial leaves in the primeval de-
composition tree, and thus some basic algorithmic problems can be solved in linear
time along the primeval decomposition tree.

The primeval tree is a generalization of the cotree representing the structure of
the well-known cographs, i.e., the graphs containing no induced P;. A cograph or its
complement is disconnected, and the cotree expresses this in terms of corresponding
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cojoin and join operations. The cotree representation of a cograph is essential in
solving various NP-hard problems efficiently for these graphs; see [19, 20] for more
information on P4-free graphs.

The study of Ps-free graphs has motivated considering graphs with few P,’s, such
as Py-reducible graphs [37, 40] (no vertex belongs to more than one Py), Py-sparse
graphs [32, 33, 39, 41, 44] (no set of five vertices induces more than one Py), Py-lite
graphs [38] (every set of at most six vertices induces at most two P,’s or a “spider”),
and Py-laden graphs [28] (every set of at most six vertices induces at most two Py’s or
a split graph). Note that in this order, every graph class mentioned in this paragraph
is a subclass of the next one.

Recently, Babel and Olariu [4] considered graphs in which no set of at most
q vertices induces more than ¢t Py’s, called (g, t)-graphs. The most interesting case is
t = ¢ — 4: (4,0)-graphs are exactly the Pj-free graphs, (5,1)-graphs are exactly the
Py-sparse graphs, and it turns out that Py-lite graphs form a subclass of (7,3)-graphs.
For all these graphs, nice structural results have been obtained that yield efficient
solutions for classical NP-hard problems. Our new class of split-perfect graphs extends
all of them.

Another motivation for studying graph classes with special P,-structure stems
from the greedy coloring heuristic: Define a linear order < on the vertex set, and then
always color the vertices along this order with the smallest available color. Chvétal [17]
called < a perfect order of G if, for each induced subgraph H of GG, the greedy heuris-
tic colors H optimally. Graphs having a perfect order are called perfectly orderable
(see [34] for a comprehensive survey); they are NP-hard to recognize [46]. Because
of the importance of perfectly orderable graphs, however, it is natural to study sub-
classes of such graphs which can be recognized efficiently. Such a class was suggested
by Chvétal in [16]; he called a graph G brittle if each induced subgraph H of G con-
tains a vertex that is not an endpoint of any Py in H or not a midpoint of any Py
in H. Brittle graphs are discussed in [35, 50, 51]. Babel and Olariu [4] proved that
(7,3)-graphs are brittle, and Giakoumakis [28] proved that Ps-laden graphs are brittle.
A natural subclass of brittle graphs, called superbrittle, consists of those graphs G in
which every vertex is not an endpoint of any P, in G or not a midpoint of any Pj in
G. Split graphs are superbrittle since in a split graph with clique C' and stable set .S,
every midpoint of a Py is in C' and every endpoint of a Py is in S. Superbrittle graphs
are characterized in terms of forbidden induced subgraphs in [47]. We will show that
our new class of split-perfect graphs is a subclass of brittle graphs, containing all
superbrittle graphs. Moreover, we construct a perfect order of a split-perfect graph
efficiently, and we obtain a new characterization of superbrittle graphs leading to a
linear time recognition.

Yet another motivation for studying split-perfect graphs stems from the theory of
perfect graphs. A graph G is called perfect if, for each induced subgraph H of G, the
chromatic number of H equals the maximum number of pairwise adjacent vertices in
H. For example, all the above-mentioned graphs are perfect. For more information
on perfect graphs, see [7, 12, 29]. Recognizing perfect graphs in polynomial time is
a major open problem in algorithmic graph theory.! Two graphs G and H with the
same vertex set V are Pj-isomorphic if, for all subsets S C V, S induces a Py in G
if and only if S induces a Py in H. Chvétal [18] conjectured and Reed [48] proved
that two P,-isomorphic graphs are both perfect or both imperfect. Thus, to recognize

IVery recently, Chudnovsky et al. [14], Chudnovsky and Seymour [15], and Cornuéjols, Liu, and
Vuskovié¢ [22] have announced that perfect graphs can be recognized in polynomial time.
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Fic. 1.1. Elementary graphs illustrated.

perfect graphs it is enough to recognize the P,-structure of perfect graphs: given a
4-uniform hypergraph H = (V,&). Is there a perfect graph G = (V, E) such that
S € & if and only if S induces a P, in G? This was done for the case when the perfect
graph G is a tree [25, 10, 11], a block graph [8], the line graph of a bipartite graph [52],
a claw-free graph [3], or a bipartite graph [2]. Note that the Pj-structure of a (not
necessarily perfect) graph can be recognized in polynomial time [31].

Another question arising from Reed’s theorem is the following: Which (perfect)
graphs are P,-isomorphic to a member of a given class of perfect graphs? Let C be a
class of perfect graphs. Graphs Pj-isomorphic to a member in C are called C-perfect
graphs. By Reed’s theorem, C-perfect graphs are perfect. Moreover, they form a class
of graphs which is closed under complementation and contains C as a subclass. Thus,
it is interesting to ask the following question: Assuming that there is a polynomial
time algorithm for testing membership in C, can C-perfect graphs be recognized in
polynomial time, too? First results in this direction are good characterizations of
tree-perfect graphs, forest-perfect graphs [9], and bipartite-perfect graphs [43]. This
paper will give a good characterization of split-perfect graphs.

DEFINITION 1.1. A graph is called split-perfect if it is Py-isomorphic to a split
graph.

Trivial examples of split-perfect graphs are split graphs and P,-free graphs. Non-
trivial examples are induced paths P, = vivs - - - v, for any integer n. To see this we

need some definitions, following [9]. Let (v1,...,v,) be a vertex order of a graph G.
Then N5 ;(v;) denotes the set of all neighbors vy of v; with k& > i. A vertex order
(v1,...,0y,) of G is said to be elementary if for all 4
oy Avige,vigs, .o vn ) for even i,
N>ilvs) = { {vit1} for odd 1.

Graphs having elementary orders are split graphs in which the “odd vertices”
vop+1 form a stable set and the “even vertices” vgr form a clique. A graph is said to
be elementary if it has an elementary order (see Figure 1.1). If the elementary graph
has at least 4 vertices, then its partition into a clique and a stable set is unique and
can be determined using its degree sequence. Thus, as split graphs in general [30],
elementary graphs can be recognized in linear time.

Obviously, P, = v1vsy - - - vy, is Py-isomorphic to the elementary graph consisting of
the elementary order (v1,...,v,). It can be seen that, for n > 7, this elementary graph
is the only split graph (up to “complementation” and “bipartite complementation”)
that is Ps-isomorphic to P,. In section 4, we will extend this example to the so-called
double-split graphs. Double-split graphs play a key role for characterizing split-perfect
graphs.

In section 2, we will show that the class of split-perfect graphs contains all
P,-laden graphs and all (7,3)-graphs (hence all Py-reducible, Pj-sparse, and Pjy-lite
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split-perfect

Py-laden superbrittle

Py-reducible
Py-free

Fic. 1.2. Relationship between graph classes.

graphs). The relationship between the above-mentioned graph classes is shown in
Figure 1.2.

In section 3, we describe forbidden induced subgraphs of split-perfect graphs,
which are needed for characterizing split-perfect graphs.

In section 4, we introduce double-split graphs and show that they are split-perfect.
As already mentioned, double-split graphs are of crucial importance for a good char-
acterization of split-perfect graphs.

In section 5, we characterize split-perfect graphs in terms of forbidden subgraphs
and in terms of their p-connected components: It turns out that for split-perfect
graphs having no homogeneous sets, the p-connected components are double-split
graphs or their complements.

In the last section, section 6, we will point out how classical optimization problems
such as weighted clique number, weighted chromatic number, weighted independence
number, and weighted clique cover number can be solved efficiently, in a divide and
conquer manner, on split-perfect graphs using the primeval decomposition tree. These
results are based on our good characterization of p-connected split-perfect graphs.

2. Preliminaries. Our notation is quite standard. The neighborhood of the
vertex v in a graph G is denoted by Ng(v); if the context is clear, we simply write
N(v). The path (respectively, cycle) on m vertices vy, vs, ..., vy with edges v;v;41
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(respectively, v;v;+1 and v1v,,) (1 < i < m) is denoted by P, = vivg - - - vy, (respec-
tively, Cy, = v1v2 - - - v v1). The vertices vq and v, are the endpoints of the path P,,,
and for a P, vivovgvy, vo and vz are the midpoints of the P,. Graphs containing no
induced subgraphs isomorphic to a graph of a given set H of graphs are called H -free
graphs. Tt is well-known that split graphs are exactly the (Cy, Cy, Cs)-free graphs [26].

For convenience, we often identify sets of vertices of a graph G and the subgraphs
induced by these sets in G. Thus, for S C V(G), S also denotes the subgraph G[S]
induced by S.

A set S of at least two vertices of a graph G is called homogeneous if S # V(G)
and every vertex outside S is adjacent to all vertices in .S or to no vertex in S. A graph
is prime if it has at least three vertices and contains no homogeneous set. Obviously,
prime graphs and their complements are connected.

A homogeneous set M is mazximal if no other homogeneous set properly contains
M. Tt is well known that in a connected graph G with connected complement G,
the maximal homogeneous sets are pairwise disjoint (see, e.g., [45]). In this case, the
graph G* obtained from G by contracting every maximal homogeneous set to a single
vertex is called the characteristic graph of G. Clearly, G* is prime. We shall use the
following useful fact for later discussions (see Figure 3.1 for the graphs G;).

LEMMA 2.1 (see [36]). Every prime graph containing an induced Cy contains an
induced Ps; or Gs or Gy.

Throughout this paper, we use the fact that, in a graph G = (V, E), every homo-
geneous set S contains exactly one vertex of every Py crossing S and V' \ S.

For the subsequent structure theorem of Jamison and Olariu we need the following
notion: A p-component H of G is called separable if it has a partition into nonempty
sets Hi, Ho such that every P, with vertices from both H;’s has its midpoints in H;
and its endpoints in Hs. Note that a p-connected graph is separable if and only if its
characteristic graph is a split graph [42].

THEOREM 2.2 (structure theorem [42]). For an arbitrary graph G, precisely one
of the following conditions is satisfied:

(i) G is disconnected,

(ii) G is disconnected,

(iii) G is p-connected,

(iv) there is a unique proper separable p-component H of G with a partition
(Hy, Hs) such that every vertex outside H is adjacent to all vertices in Hy
and nonadjacent to all vertices in Hy.

Based on this theorem, Jamison and Olariu define the primeval decomposition,
which can be described by the primeval decomposition tree and leads to efficient
algorithms for a variety of problems if the p-connected components are sufficiently
simple. We will show that this is the case for split-perfect graphs.

Note that dividing a graph into p-connected components can be done in linear
time (see [6]). This fact together with Proposition 2.3 below allows us to restrict our
attention to p-connected split-perfect graphs only.

PROPOSITION 2.3. A graph is split-perfect if and only if each of its p-connected
components is split-perfect.

Proof. The only if part is clear. To prove the if part, let G be a graph such
that each p-connected component A; (1 < ¢ < m) of G is Ps-isomorphic to a split
graph B;. Let W be the set of all vertices of G not belonging to any P,. We now
construct, inductively, a split graph H,, P,-isomorphic to G as follows.

First, set Hy := B; UW. If the split graph H; (1 < i < m) is already constructed,



346 ANDREAS BRANDSTADT AND VAN BANG LE

then H,;; is obtained from H; and B;;1 by joining every vertex in the clique part of
H,; and every vertex of B;y; by an edge.

Clearly, H,, is a split graph. Moreover, B; (1 < i < m) are exactly the p-connected
components of H,,. Thus, H,, is Ps;-isomorphic to G. 0

OBSERVATION 2.4. Let G be split-perfect and let H = (Cy, Sy, Eg) be a split
graph Py-isomorphic to G. Assume that each of the sets {a,b,c,u} and {a,b,c,v}
induces a Py in G. Then exactly one of the following conditions holds:

(i) a,b,c induce a path Ps in H, and u and v are both adjacent in H to an
endpoint of the path Hla,b,c|. In particular, u and v both belong to the
stable-part Sy of H.

(ii) The statement (i) holds in H instead of H. In particular, u and v both belong
to the clique-part Cy of H.

Proof. Since a, b, ¢, and u induce a Py in H, H|a,b, c] must be a P, or else a Ps.

The rest follows from the fact that H is a split graph. ]

PROPOSITION 2.5. Let G be a p-connected split-perfect graph. Then every homo-
geneous set of G induces a Py-free graph.

Proof. Assume to the contrary, that there is a homogeneous set S in G which
contains an induced Py zixox3zs. As G is p-connected, there is a crossing P, P to
the partition S and V(G) — S. As S is homogeneous, P has exactly one vertex in
S. Let a, b, c be the three vertices of P outside S. Since S is homogeneous, each of
the sets {a,b,c,z;}, 1 < i < 4, induces a Py in G. Now, by Observation 2.4, if H
is an arbitrary split graph P,-isomorphic to G, then in H, x1, 22, x3, x4 are pairwise
nonadjacent, or else pairwise adjacent. In particular, H[z1, x2, x5, 24] cannot be a Pj,
a contradiction. O

PROPOSITION 2.6. Let G be a p-connected graph. G is split-perfect if and only if

(i) every homogeneous set of G induces a Py-free graph, and

(ii) G* is split-perfect.

Proof. The necessity is clear, because of Proposition 2.5 and the fact that G*
is (isomorphic to) an induced subgraph of G. We now prove the sufficiency. Let
G* be Py-isomorphic to a split graph H. For each vertex v of G* let M, be the
corresponding maximal homogeneous set in G. Let H' be the graph obtained from H
by replacing each vertex v by the complete graph on vertex set M, (if v belongs to
the clique part of H), respectively, be the stable set M, (otherwise). Clearly, H' is a
split graph. Since the sets M, contain no Py, G and H' are Pj-isomorphic (extend a
P,-isomorphism between G* and H to one between G and H' in a natural way). ]

Propositions 2.3 and 2.6 allow us to consider only p-connected split-perfect graphs
without homogeneous sets.

Recall that Ps-laden graphs are those graphs in which every set of at most six
vertices induces at most two P,’s or a split graph.

COROLLARY 2.7.

(i) Ps-laden graphs are split-perfect.

(ii) (7,3)-graphs are split-perfect.

Proof. To prove (i), let G be a p-connected Pj-laden graph. Then

every homogeneous set of G consisting of more than two vertices is a stable set,

otherwise, let M be a homogeneous set with at least three vertices a, b, ¢, where a and
b are adjacent. By the p-connectedness, there is a crossing P, P for M and V(G)— M.
As M is homogeneous, |V (P)NM| = 1. Now, (V(P)—M)U{a,b, c} consists of exactly
six vertices, induces three P,’s, but does not induce a split graph, a contradiction.



SPLIT-PERFECT GRAPHS 347

Now, it was proved in [28, Theorem 10] that
G* is a Ps or P5 or a split graph.

In particular, G* is split-perfect and (i) follows from Propositions 2.6 and 2.3.

To prove (ii), we first show the following claims; the first one is easy to see; the
second one follows from the known inclusions (6,2) C Py-lite C Py-laden and (i).

Cram 1. Ewvery graph with at most five vertices, different from the Cs, is split-
perfect. O

CrLaM 2. (6,2)-graphs are split-perfect. d

Now, consider a p-connected (7,3)-graph G. We have to show that G is split-
perfect. It was shown in [4, Theorem 4.5] that G has at most six vertices. By Claims
1 and 2, we may assume that G has exactly six vertices and exactly three P,’s.

If G has a homogeneous set, G* is split-perfect by Claim 1 and every homogeneous
set has at most three vertices (otherwise, the p-connectedness would imply that G
has four P,’s). Hence, by Proposition 2.6, G is split-perfect. So, let G have no
homogeneous set.

If G or G has a Ps, say G, then (by considering the neighbors of the vertex
outside the P5) G is a Pg or the graph with vertices v; (1 < ¢ < 6) and edges v;v;11
(1 <4 <5), vaug, and vzvg (otherwise G has a homogeneous set or four P,’s). In each
case, G is split-perfect.

If G is (Ps, P5)-free, then G cannot contain an induced Cy or Cy. Otherwise, by
Lemma, 2.1, G would contain a Gs, Gs, G4, or G4, but each of these graphs has more
than three P,’s, a contradiction. Thus, G is (Cy, Cy, Cs)-free; i.e., G is a split graph
and (ii) follows. O

3. Forbidden induced subgraphs for split-perfect graphs. As a conse-
quence of Observation 2.4, we give a list of forbidden induced subgraphs of split-
perfect graphs: These are the induced cycles Cj of length k£ > 5, the graphs G;
(1 <4 < 8) shown in Figure 3.1, and their complements. It turns out (Theorem 5.1)
that these forbidden induced graphs characterize prime split-perfect graphs.

We need some notions. Let G and G’ be two graphs with the same vertex set. An
induced Py in G is bad if its vertices do not induce a Py in G’ (thus, Ps-isomorphic
graphs do not have bad Py’s).

Another useful notion is suggested by Observation 2.4: Let G be a split-perfect
graph and H a corresponding split graph having the same P,-structure. We call the
clique and the stable set of H the two classes of H. Two vertices x,y in G are called
equivalent (x ~ y) if they are in the same class of H. Clearly, ~ is an equivalence
relation on the vertex set of a split-perfect graph.

Now, Observation 2.4 means that in a split-perfect graph G, vertices x and y are
in the same class (i.e., x ~ y) if there are vertices a,b,c € V(G) — {u,v} such that
{a,b,¢,z} and {a,b, c,y} both induce a Pj.

Therefore, in a split-perfect graph, pairwise equivalent vertices induce a P,-free
subgraph.

Recall that a P, in a split graph H has its two midpoints in one class and its two
endpoints in the other class. Thus, if G is Ps-isomorphic to H, then every Py P of G
must be balanced with respect to H; i.e., P has exactly two vertices in one class and
the other two vertices in the other class.

LEMMA 3.1. None of the graphs Cy,C) (k > 5), and G;,G; (1 < i < 8) in
Figure 3.1 is split-perfect.

Proof. Throughout this proof, we will extensively use the facts discussed above.
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Note that G is not split-perfect if and only if G is not split-perfect. Thus we only
show that none of Cy, k > 5, and G;, 1 < i < 8, is split-perfect.

Consider Cy for odd k > 5. In this case, all vertices of the Cy are pairwise
equivalent, which means that Cj is not split-perfect. (Note that for odd cycles Cj,
k > 5, it also follows from Reed’s theorem that they are not split-perfect because they
are not perfect.)

Let k£ = 2n > 6 and write C, = v1v3...v2,. In this case, all odd vertices vg;_1
are pairwise equivalent and all even vertices vg; are pairwise equivalent. Thus, if Cy,
is split-perfect and H is a corresponding split graph, then, by balance, one class of
H consists of exactly the vertices vg;_1 and the other class consists of exactly the
vertices v9;. Now it is a matter of routine to check that in any realization of the split
graph H some Py in Cs, must be bad.

Assume that G € {G1,G3, G4} is split-perfect and let H be a corresponding split
graph. Then 2 ~ 4 ~ 6. Since the P,’s in G are balanced, the classes of H are {2,4,6}
and {1,3,5}. Again, it is a matter of routine to check that in any realization of the
split graph H some P, in G must be bad.

Similary, assume that G € {G5, Gg} is split-perfect and let H be a corresponding
split graph. Then 1 ~ 2 ~ 5. By balance, the classes of H are {1,2,5} and {3,4,6}.
Again, it is a matter of routine to check that in any realization of the split graph H
some P, in G must be bad.

If G5 is split-perfect, then 1, 3, 4, 5, and 6 are pairwise equivalent. But then no
P, in G5 is balanced.

If G7 is split-perfect, then 3 ~ 4 ~ 7. Since every P, of G7 has two vertices
in {3,4,7}, it follows by balance that every corresponding split graph H has classes
{3,4,7} and {1,2,5,6}. Again, it is a matter of routine to check that in any realization
of the split graph H some P in G7 must be bad.

Finally, if Gg is split-perfect, then 1, 2, 3, and 4 are pairwise equivalent, but
induce a Pj. u|

4. Double-split graphs. We define now the class of double-split graphs gen-
eralizing the split graphs and playing a key role in the subsequent characterization
of split-perfect graphs. As an important step towards this characterization, we will
show that double-split graphs are split-perfect.

DEFINITION 4.1. A graph is called double-split if it can be obtained from two
disjoint (possibly empty) split graphs G, = (Qr,Sr,EL), Gr = (Qr,Sr, Er) and
an induced path P = Plxr,zR], possibly empty, by adding all edges between xy, and
vertices in Qr, and all edges between g and vertices in Qr (see Figure 4.1).

Remark. Every split graph is double-split as the case of an empty path P and an
empty split graph G shows.

LEMMA 4.2. Double-split graphs are split-perfect.

Proof. Let G be a double-split graph consisting of two split graphs G =
(Qr,SL,EL), Gr = (Qr, Sr, Fr) with cliques Qr,Qgr and stable sets Sy, Sgr. If
the path P connecting G, and G is empty, then G is P,-isomorphic to the following
split graph H = (Qr UQRg, Sr. U Sk, Ex) obtained from G, and Gg by adding a join
between @7, and Qi and between S;, and Qg.

Now assume that P = v3vg...v;, © > 3, such that x; = w3 is adjacent to all
vertices of @, and xr = v; is adjacent to all vertices of @r. We construct a split
graph H = (Qu, Sy, Ex) with the same Py-structure as G. Hereby we use the fact
that induced paths P’ = v1v2v3vy . .. v;v;110;42 are split-perfect and can be realized
by the elementary split graph Gp: = ({v2,v4,vg,. ..}, {v1,v3,05,...}, Epr). We will



350 ANDREAS BRANDSTADT AND VAN BANG LE

Gr Gr
5 s (|8
Qr Qr
St Sk

F1G. 4.1. Double-split graphs illustrated.

see that this split graph Gp: can be extended to H by replacing v; by Si, v2 by Qr,
vit+1 by Qr, and v; 12 by Sk in a suitable way. Moreover, we use the following simple
property of split graphs.

CramM. Let G = (Q, S, E) be a split graph and let G' = (Q, S, E") be the following
bipartite complement of G: For allz € Q and ally € S, zy € E' <= a2y ¢ E. Then
G and G’ are Py-isomorphic. 0

We construct the split graph H = (Qg, S, Err) depending on the parity of |P/;
see Figure 4.2.

O = Qr U{vg,vg,...,v;—1}UQgr if i is odd,
H-= Qru {vg,v6,...,0;} USR otherwise,

S ._{ SLU{U3,U5,...,UZ‘}USR if 4 is odd,
H-= Sp U{vs,vs,...,0,1} UQRr otherwise.
Now FEp consists of the following edges based on the edge set of Gp/ and on
Er, Er and depending on the parity of | P|:

(1) vertices in Qg are pairwise adjacent;

(2) the Eg-edge set between Sy, and Qp, is Ep;

(3) the Ey-edge set between Qg and Sg is the bipartite complement of Fr if 4
is odd and is E'r otherwise;

(4) there is a join between @ and Sk (due to the fact that there is an edge
between ve and v;42 in Gp/) if ¢ is odd and there is a join between @ and
Qg otherwise;

(5) vertices from {vs,vy,...,v;} have a join to a set from Sy, Qr,Qr, Sgr if and
only if there is an edge in Gps to the corresponding vertex from {vq, v,
Vit1,Vita}. Thus, for odd i, Qr has a join to vs,vr,...,v;, all vertices z €
{v4, V6, ...,v;—1} have a join to Sk, and Qg has a join to v;; if ¢ is even, then
Q@ has a join to vs,vr,...,v;—1, and all vertices x € {vg,vg,...,v;—2} have
a join to Qg;

(6) the edges between vertices from vs, vy, ..., v; are the same as in Gpr.

We claim that G and H are Pj-isomorphic. First we show that every Py of G is

a Py in H. There are the following types of P,’s in G:

(a) Py’sin Gp, and Py’s in Gp;

(b) xyvsvy with x € S, y € Qr, xy € Er (for i = 3 replace vq by a vertex
z € QRr);

(¢) zvsvgvs for z € Qp (for i = 3 replace vy by a vertex y € Qr and vs by a
vertex z € Sg);
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Fi1G. 4.2. Construction fori =3 (left) and i = 4 (right); bc(E) means the bipartite complement
of E.

(d) Py’sin vz, vy,...,v; (for i € {3,4,5} there are no such Py’s);

(e) vi—ovi—1v;xz with € Qg (for ¢ = 3 this corresponds to case (b), for i = 4

replace v;_s by z € Qr);

(f) vi—1v;zy with « € Qr, y € Sk, xy € Eg (for i = 3 replace v;—1 by z € Q).

Type (a) for G is obviously fulfilled by construction of H, and for Gg, the
bipartite complement of Gr in H ensures the property if 7 is odd, and is obvious in
the other case.

Types (b), (c¢), (d), (e) are obviously fulfilled.

Type (f): For the Py v;—1v;zy with x € Qgr, y € Sg, vy € Eg, if i is odd, then
xy is not an edge in the bipartite complement of G, and thus v;zv;_1y is a Py in H.
If 7 is even, xy is an edge in Ey and v;_jv;yx is a Py in H.

Now consider a Py in H. According to the definition of H this is either a Py
between () and Sy, which is the same as in G, or a Py between @ and Sk which,
for odd i, is the same as in Gg due to the bipartite complement and, for even 1, is
obviously the same as in Gg, or a Py which goes back to Gp but G p/ realizes exactly
the Py’s of the induced path P’ which are P,’s in G as well. O

Double-split graphs and their complements can be recognized in linear time due
to their simple structure as we will show in the appendix.

5. The structure of split-perfect graphs. Now we are able to describe prime
split-perfect graphs as follows.

THEOREM 5.1. Let G be a prime graph. Then the following statements are
equivalent:

(i) G is split-perfect;

(ii) G has no induced subgraphs Cy,Cy (k >5), G;,G; (1 <i <8);

(iii) G or G is a double-split graph.

Theorem 5.1 and Propositions 2.3 and 2.6 immediately yield the following
theorem.

THEOREM 5.2. A graph G is split-perfect if and only if each of its p-connected
components H has the following properties: Every homogeneous set in H induces a
Py-free graph, and H* is a double-split graph or the complement of a double-split
graph. 0

Proof of Theorem 5.1. The implication (i) = (ii) follows from Lemma 3.1, and
the implication (iii) = (i) follows from Lemma 4.2. Note that these two implications
hold in general, not only for p-connected graphs or prime graphs.

We now complete the proof by showing (ii) = (iii), where we will make use of the
primality as follows.
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OBSERVATION 5.3. Let G be prime and let H be a Py-free induced subgraph of G.
If H is not a stable set (a clique, respectively), then there exist adjacent (nonadjacent,
respectively) vertices x,y in H and a vertex z outside H such that z is adjacent to x
and nonadjacent to y.

Proof. Assume that H is not a stable set (the case that H is not a clique can be
seen similarly). Let S C H be maximal such that H[S] has no isolated vertices. As
H is not a stable set, |[S| > 2. It is well known that Ps-free graphs with at least two
vertices contain two vertices u and v with N(u) = N(v) or N(u)U {u} = N(v) U {v}
(so-called twins). Let {u,v} be twins in S. As G is prime, there is a vertex z ¢ S
adjacent to u and nonadjacent to v. By definition of S, z ¢ H. If u and v are adjacent,
then we are done by setting z = v and y = v. Thus, let v and v be nonadjacent.
By definition of S, u is adjacent to another vertex w in S which is also adjacent to v
because {u, v} is homogeneous in S. Now, we are done by setting © = u, y = w (if z
is nonadjacent to w), or x = w, y = v (otherwise). |

Let G be a prime graph satisfying the statement (ii). If G is (Ps, P5)-free, then
by Lemma 2.1 G cannot contain a Cy or a Cy (otherwise G would contain a G3, Gs,
G4, or G4). Hence G is (Cy4, Cy, Cs)-free, i.e., G is a split graph and we get (iii).

Therefore, we may assume that G contains a Ps or a Ps5. By considering comple-
mentation if necessary, assume that G has an induced P5. Consider a longest induced
path P = vivs...v, in G. By assumption, £k > 5. Now we are going to show, by a
number of claims, that G is a double-split graph.

CLAIM NO-MIDDLE. For every 2 <i<k—1,

(N(vi—1) NN (vit1)) = (N(vi—2) U N(viy2)) = {v}.

Proof. Let H = (N(vi—1) N N(vi41)) — (N(vi—2) U N(v;12)). Then H induces a
Py-free graph, otherwise G’ would have a Gg. Thus, assuming H # {v;}, H has twins
{z,y}. As G has no homogeneous set, there is a vertex z ¢ H such that zax € E(G)
but zy ¢ E(G). We distinguish between three cases.

Case 1. z is adjacent to both v;_1 and v; 1.

By definition of H and z ¢ H, z must be adjacent to v;_s or v; 2. By symmetry,
let zv;—o € E(G). Now, if z is also adjacent to v;yo, then v;_o,v;_1,Vit1,Vit2,Y, 2
induce a Gg. If z is nonadjacent to v;; 2, then the same vertices induce a G5. Case 1
is settled.

Case 2. z is adjacent to v;—; and nonadjacent to v; 41 (or vice versa).

Then z cannot be adjacent to v; 4o (otherwise there is a C5). Now, if z and y are
adjacent, then there is a G, and if z, y are nonadjacent, then there is a G5. Case 2
is settled.

Case 3. z is nonadjacent to both v;_1 and v; 1.

First, assume 2y € E(G). Then z cannot be adjacent to v;_o or to v;4o (otherwise
there is a G5). But then v;_2,v;_1,%,vi41, V12,2 induce a G;. Second, assume
xy ¢ E(G). Then there is a G5 (if z is adjacent to v;_2) or a G4 (otherwise). Case 3
is settled. O

Let M be the set of all vertices outside P adjacent to a vertex in P but not to all
vertices in P.

CLAamM N. For every v € M, N(v) N P = {va} or {vs,v3} or {vi,ve,vs3} or
{ve—1} or {vp_o,vp_1} or {vk_2,vk_1, 01} o o

Proof. Since G does not have a Cy (¢ > 5), G2, G2, Gs, G5, or Gg, every vertex
in M has at most three neighbors in P. We distinguish between three cases.

Case 1. [IN(v) N P| = 3.
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Then N(v) N P is a subpath of P, otherwise G would have a C, for some £ > 5,
or a G or G5 or a Gg. Thus N(v) N P = {v;_1,v;,v;11} for some suitable i. Now,
by Claim No-Middle, i =2 or ¢ = k — 1, and Case 1 is settled.

Case 2. [IN(v) N P| =2.

We first claim that N(v) N P is a subpath of P. Assume to the contrary that
the two neighbors of v in P are nonadjacent. Then there is a suitable ¢ such that
N@)N P = {v;_1,vi41}, otherwise G would have a C; for some ¢ > 5. Now, by
Claim No-Middle, i = 2 or ¢ = k — 1. By symmetry we only consider the case
N@w)N P = {vy,v3}.

Let H = (N(v1) N N(vs) N M) U {vs}. Note that no vertex in H is adjacent to
a v;, j > 4 (as we have seen in Case 1). Thus H is Ps-free (otherwise G would have
a (g). Since H is not a clique (it contains v and vs), there exist, by Observation 5.3,
nonadjacent vertices z,y € H and a vertex z ¢ H adjacent to « but nonadjacent to
y. Note that z € M: If z is nonadjacent to P, then vy, vs,z,y, 2z, v4 induce a G4. If z
is adjacent to all v;’s, then vy, vs, v4,vs5,y, z induce a G5. Now, if zvz € E(G), then
zv1 ¢ E(G) (otherwise z € H). But then vy, v3, vy, x,9, 2 induce a G5 or a G5. Thus,
zv3 ¢ E(G). But then vy, vs,v4, 2,9y, 2 induce a G3 or contain a Cs depending on
zv; € E (if zvg € E(Q)) or a G4 or a G5 (if zvy ¢ E(G)).

We have shown that the two neighbors of v on P are v; and v;41 for some suitable
i. Since G hasno Gr, i € {1,2,k— 1,k —2}. We are going to show that i € {2,k — 2}
holds. By symmetry, we only show i # 1.

Assume to the contrary that ¢ = 1. Let H = N(v3) — N(v3). Then no vertex
in H is adjacent to vj, j > 4 (as we have seen in Case 1). Thus, H is Ps-free
(otherwise G would have a Gg). Since H is not a stable set (it contains v and wvy),
there exist, by Observation 5.3, adjacent vertices =,y € H and vertex z ¢ H adjacent
to x but nonadjacent to y. If zvy € E(G), then zvs € E(G) (otherwise z € H)
and vy, v3,v4, 2,9, 2 induce a Gy or a G4. Thus zvs ¢ E(G), hence also zv3 ¢ E(G)
(otherwise vy, v3,v4, 2,9, 2 induce a G5 or a Gi3). But then zzvyvs - - - vy, is an induced
path longer than P, or else z is adjacent to some v;, j > 4, yielding a Cj4;.

This shows that ¢ # 1 and, by symmetry, i # k — 1. We have proved Claim N in
Case 2.

Case 3. [IN(v) N P| =1.

Then N(v) NP = {vz2} or N(v) N P = {vi_1}. Otherwise G would have a Gy, or
there is an induced path longer than P. Claim N is proved in Case 3. 0

Let Qr = N(v3) — (N(vs) U N(v5)).

CLamm QL. Qp is a clique.

Proof. First note that @, induces a P,-free graph (otherwise G would have a Gg).
Now, assume to the contrary that @, is not a clique. By Observation 5.3, there exist
nonadjacent vertices z,y € @ and vertex z ¢ @, adjacent to x but nonadjacent to
y. We distinguish between two cases.

Case 1. z and vz are nonadjacent.

If zvy ¢ E(G), then z,y, z,v3,v4,v5 induce a Gy if zvs ¢ E, else z,x,v3,v4,v5 is
a Cs. If zvy € E(G), then, by Claim N, zv5 ¢ F(G) and G has a G4. Case 1 is settled.

Case 2. z and vs are adjacent.

Then z € M. Because, if z is adjacent to all v;’s, then y cannot be adjacent to
vy (otherwise G would have a G4 induced by y, v, v3, v4, vs, and z). By Claim N,
y is also nonadjacent to v1. But then G has a Gj.

Now, by definition of @1, z must be adjacent to vs or vs, and by Claim N, z is
adjacent to vy and nonadjacent to vo. Thus z cannot be adjacent to vy, otherwise
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Vo, V3, Vg, Vs, T, z induce a G (if zvs ¢ E(G)) or a Gy (if zvs € E(G)). Therefore, by
Claim N, z cannot be adjacent to vy. But then vy, va, v3, v4, v5, z induce a G;. Case 2
is settled. ]

Let T be the set of all vertices that are adjacent to all vertices in P, and let
Sp=N(@Qr) — ({vs}uT).

CrLAIM SL. Sy, is a stable set.

Proof. We first show that

(5.1) v e S, = vy ¢ E(Q), 1> 3.

Proof of (5.1). Assume first that v is adjacent to vs. By definition of @, v must
be adjacent to v4 or to vs (otherwise v would belong to @Qr,, contradicting v € Sy,).
Thus, by Claim N, v is adjacent to vy and is nonadjacent to vy, vs. Now, a neighbor
x in Qr, of v together with vy, va, v3, v4, and v induce a Go (if zv1 ¢ E(G)) or a Gy
(otherwise). We have shown that v is nonadjacent to vs. Next, if vuy is an edge, then,
by Claim N, v is nonadjacent to v; and wvs, and so a neighbor z in @, together with
v1, U2, V3, Vg, v induce a Gg or a G5. Thus v is nonadjacent to vy. Finally, v cannot
be adjacent to v; for any ¢ > 5 because G does not have a Cyp, £ > 5. Thus, (5.1) is
proved. a

Next, we show that

(5.2)  for every two adjacent vertices u,v € S, N(u)NQr = N(v)NQL.

Proof of (5.2). Assume that there is a vertex x € @, adjacent to u but nonadja-
cent to v, say. Let y € @, be a neighbor of v. Then by (5.1), u,v, z,y, vs, v4 induce
a Gy (if yu € E(G)) or a Gg (otherwise). This contradiction proves (5.2). |

We furthermore show that

(5.3) Sy, induces a Py-free graph.

Proof of (5.3). If not, then by (5.2), there is a vertex in @, adjacent to all vertices
of a Py in Sy,. By (5.2), G would have a Gg. This proves (5.3). 0

Now, to finish the proof of Claim SL, assume that Sy is not a stable set. By
Observation 5.3, there exist adjacent vertices u,v € Sy, and vertex w ¢ S, adjacent
to u but nonadjacent to v. By (5.2), w ¢ Q.

Since w ¢ S, w cannot have a neighbor in Qr, and it can be seen, as in the
proof of (5.1), that w cannot be adjacent to v;, i > 3. But then wuxvsvy - - - vg, where
x € Qr is a neighbor of u, is an induced path longer than P. The proof of Claim SL
is complete. a

Let Qr = N(vk—2) — (N (vk—3) UN(vk—4)) and Sk = N(Qr) — ({vx—2}UT). By
symmetry, we have the following claims.

CrAamM QR. Qg is a clique. ]

CLAIM SR. Sg is a stable set. 0

Note that from the definition it follows that QL NQr = @, and from Claim N and
the forbidden Gy it follows that Sy N Sk = 0.

CLAIM NOE (no other edge). There is no edge between Qr, U Sy, and Qr U Sg.

Proof. Let x € Qp USL and y € Qr U Sg be two adjacent vertices. Since P is
an induced path and by Claim N, z,y ¢ {vy,vs,vk—1,v5}. Then = ¢ Q (otherwise
y would belong to Sp) and y ¢ Qg (otherwise x would belong to Sg). Thus, z € Sy,
and y € Sg, yielding a C, k > 5. This contradiction proves Claim NOE. ]

CLAM NOV (no other vertex). V(G) = PUMUSLUSRUT.
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Proof. If there is a vertex v ¢ PUM U S, U SgUT, then, as G is connected (it
has no homogeneous set), v must be adjacent to some vertex in Sy, U Sg. But then
there is an induced path longer than P. 1]

CraM T. T =0, i.e., there is no vertex adjacent to all vertices of P.

Proof. Assume there is a vertex v adjacent to all v;’s. Then v is adjacent to all
vertices in Qr (and in Qr), otherwise G would have a G4. Also, v is adjacent to all
vertices in Sy, (and in Sg), otherwise G would have a Gs.

Thus, every vertex from T is adjacent to all vertices in G — T, implying, by Claim
NOV, that G—T is a homogeneous set in G. This contradiction proves Claim T. ]

It follows from the claims that G is a double-split graph (with the two split
graphs formed by Qr,Sr and Qg, Sg, respectively). The proof of Theorem 5.1 is
complete. 0

COROLLARY 5.4. Split-perfect graphs can be recognized in linear time.

Proof. This follows from Theorem 5.2 and the facts that

e the p-connected components of a graph can be found in linear time [6];

e all maximal homogeneous sets of a (p-connected) graph G can be found in
linear time [23, 24, 45];

e Py-free graphs can be recognized in linear time [21] (for a new and sim-
pler 3-sweep lexicographic breadth-first search algorithm recognizing Py-free
graphs in linear time, see [13]); and

e double-split graphs and their complements can be recognized in linear time
(see the appendix). O

In the remainder of this section we will show that the class of split-perfect graphs
lies between the classes of superbrittle graphs and of brittle graphs. We first give a
new characterization of superbrittle graphs in the following theorem.

THEOREM 5.5. A graph G is superbrittle if and only if for each of its p-connected
components H of G,

(i) the homogeneous sets of H are cographs, and

(ii) the characteristic graph H* is a split graph.

Proof. Assume first that G is superbrittle. Then, since the graphs Gg and
Gsg (see Figure 3.1) are not superbrittle, homogeneous sets in p-connected compo-
nents are Py-free; otherwise a crossing P, leads to an induced subgraph Gg or Gg.
Now we show condition (ii). Note first that obviously superbrittle graphs are also
(Ps, Ps,Cs, G4, Gy)-free (for G4 and Gy, see Figure 3.1). Then, due to Lemma 2.1,
H* is Cy-free since a Cy in a characteristic graph extends into a Ps or G3 or G4 but
the G3 contains a Ps;. The same holds for the complements which means that H* and
its complement are chordal, i.e., H* is a split graph.

Now let G be a graph fulfilling the conditions (i) and (ii) for all its p-connected
components. We are going to show that G is superbrittle. Since the property to be
superbrittle is a P4 condition, it is sufficient to show that the p-connected components
H of G are superbrittle. Note that split graphs are superbrittle, i.e., H* is superbrittle.
Furthermore, by substituting cographs as homogeneous sets into vertices of a split
graph, no midpoint of a Py in H* can become an endpoint in H and no endpoint of
a Py in H* can become a midpoint in H since homogeneous sets contain at most one
vertex of a P;. This shows that H is superbrittle, and thus G is superbrittle. O

Theorem 5.5 immediately implies the following.

COROLLARY 5.6. Superbrittle graphs are split-perfect and can be recognized in
linear time.

COROLLARY 5.7. Split-perfect graphs are brittle. Moreover, a perfect order of a
split-perfect graph can be constructed efficiently.
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Proof. Since there is no crossing Py for two p-connected components, a graph is
brittle if and only if each of its p-connected components is brittle. Now, if G is a
p-connected split-perfect graph, then G* is chordal or the complement of a chordal
graph (Theorem 5.2); hence G* is brittle. Let v be a vertex in G* that is not an
endpoint (a midpoint) of any P, in G*. Then, by Proposition 2.5, every vertex in the
homogeneous set in G corresponding to v is not an endpoint (a midpoint, respectively)
of any P, in (G. Since every induced subgraph of a split-perfect graph is again split-
perfect, it follows that split-perfect graphs are brittle.

Moreover, a perfect order of a split-perfect graph can be constructed as follows:
Note that a perfect order of a chordal graph (the complement of a chordal graph) can
be found by constructing a perfect elimination order and reversing its order. Now, a
perfect order of G* yields, in a natural way, a perfect order of G. Combining these
perfect orders on the p-connected components in an arbitrary sequence, we obtain a
perfect order of a split-perfect graph. ]

6. Optimization in split-perfect graphs. As already mentioned, Theorem
2.2 implies a decomposition scheme, called primeval decomposition, for arbitrary
graphs.  The corresponding tree representation, called primeval tree, has the
p-connected components and vertices not belonging to any Py of the considered graph
as its leaves.

The important features of the primeval tree of a given graph G are the following:

e If an optimization problem such as weighted clique number, weighted chro-
matic number, weighted independence number, and weighted clique cover
number can be solved efficiently on the p-connected components of G, then
one can also efficiently solve the problem on the whole graph G; see, for
example, [1].

e The primeval tree can be constructed in linear time; see [6].

Based on these facts, linear time or at least polynomial time algorithms have been
found for classical NP-hard problems on many graph classes such as (q,q — 4)-graphs
and various subclasses. We now point out how to compute the weighted clique size
ww(G) and the weighted independence number o (G) for p-connected split-perfect
graphs G efficiently.

First, we shall use the following facts:

e The weighted clique number of a chordal graph can be computed in linear
time (well known).

e The weighted independence number of a chordal graph can be computed in
linear time as pointed out by Frank [27].

Second, let H be a homogeneous set in G and let G/H be the graph obtained
from G by contracting H to a single vertex vgy. Then it is well known (and easy to
see) that

ww (G/H) = wy(G), respectively, ow (G/H) = aw(G),

where the weighting w’ is obtained from w by defining w'(vy) = wyw (G[H]), respec-
tively, w'(vy) = aw (G[H]).

Thus, if wy (G*) and wy, (H) (respectively, ayw (G*) and aw (H)), H a homogeneous
set in G, can be computed in linear time, then wy (G) (respectively, ayw(G)) can be
computed in linear time, too.

Now, if G is a p-connected split-perfect graph, then by Theorem 5.1, G* is a
double-split graph or the complement of a double-split graph. In any case, G* is a
chordal graph or the complement of a chordal graph. If G is chordal, then wy(G*)
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and oy (G*) can be computed in linear time. If G* is the complement of a chordal
graph, then, by considering G*, wy, (G*) and oy, (G*) can be computed in O(n?) time
(n is the vertex number of G). Furthermore, by Proposition 2.5, every homogeneous
set H of G induces a Py-free graph; hence wy (H) and ayw(H) can be computed in
linear time. This and the facts that the primeval tree of G as well as all maximal
homogeneous sets of G can be found in linear time show that wy(G) and ay(G) can
be computed in O(n?) time.

The problems of weighted chromatic number and weighted clique cover number
can be solved similarly; we omit the details. Note that for perfect graphs in general
and in particular for split-perfect graphs, the weighted chromatic number equals the
weighted clique number, and the weighted independence number equals the weighted
clique cover number. Thus, we can state the following result.

THEOREM 6.1. The weighted clique number, the weighted chromatic number, the
weighted independence number, and the weighted clique cover number of a split-perfect
graph can be computed in O(n?) time.

Appendix. Linear-time recognition of double-split graphs and their
complements. Let DS(k) denote the class of double-split graphs (H;, P, Hy) with
split graphs H; and Hs and k vertices in the induced path P connecting H; with Ho,
and let DS = J,~, DS(k).

THEOREM A.1l. Double-split graphs and their complements can be recognized in
linear time.

Proof. For a given graph G = (V| E) we have to check whether there is a k > 1
such that G € DS(k). Observe that for G = (Hy, P, Hy) € DS(k) with k > 3, the
path P = z7...x, contains at least one inner vertex of degree 2.

Thus, in order to check whether G € DS(k) for k > 3, determine the set Dy of
vertices of degree 2 in G (in the nondegenerate case, Do contains no clique vertices
from Hi, Hs and thus Ds is stable) and check whether G \ Dy is the disjoint union
of two split graphs H{, H5. Moreover, check whether D5 is the disjoint union of an
induced path P’ (the inner vertices of P) and a stable set S’. S consists of the
vertices in S’ adjacent to some vertex in H for i € {1,2} (i.e., H/US! is a split graph
H; with the property that the left (right) endvertex of P’ is adjacent to exactly one
clique vertex of Hy (Ha, respectively)).

Now consider the case G € DS(1) or G € DS(2). We give an argument using Py
properties that is similar for the complement graphs.

Case (G € DS(1)). For a given G we have to identify the vertex x; of P. If
G € DS(1), G has the following two types of Py’s:

(1) Py’s abed contained in Hy (Ha, respectively);

(2) Py’s abzqd containing x; as a midpoint.

Thus for a given G, find a P, in linear time if there is any (the case that G contains
no P, reduces to threshold graphs or two cliques intersecting in exactly one vertex),
and check whether one of the midpoints of the Py (of type (2)) is a cutpoint of G
such that the connected components are split graphs and the midpoint is completely
adjacent to both of the cliques. If none of the midpoints is a cutpoint, then check the
Py abed (of type (1)) for the following property: Let N := N(b)NN(c) NN (a) N N(d),
where N (v) is the set of all nonneighbors of v. Check whether the two nontrivial
connected components of G’ := G\ N are split graphs. If yes, then one of these split
graphs (namely the one not containing the P;) must have exactly one neighbor x;
in N. Now check whether the neighborhoods of x; in the two components Hq, Hy of
G\ {x1} are cliques C7, C5 such that H; \ C; are stable.
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Case (G € DS(2)). For a given G we have to identify the vertices x1,x2 of P. If
G € DS(2), G has the following three types of Py’s:

(1) Py’s abed contained in Hy (Ha, respectively);

(2) Py’s abxyizo containing xq as a midpoint and x5 as an endpoint;

(3) Py’s axyx2b containing 1,2 as midpoints.

Again we start with determining any Py in G. For types (2) and (3), try deter-
mining whether the midpoints of the P, are cutpoints and the connected components
fulfill the required properties. For type (1), similar arguments as in case G € DS(1)
will work.

Let co-DS(k) denote the complement graphs of DS(k) graphs. We first describe
linear time recognition of co-DS(k) graphs for k > 3. As for DS(k) graphs, the inner
vertices of the path P have to fulfill a degree condition which is now degree n — 3.
Thus, in order to check whether G € co-DS(k) for k > 3, determine the set D,,_3
of vertices of degree n — 3 in G and check whether G\ D,,_5 is the join of two split
graphs H{, H). In order to check this in linear time, use the techniques of [24] in order
to determine the (two nontrivial) connected components Hy, H) in the complement
graph G for a given G and check whether they are split graphs. Moreover, check
whether the connected components of D,, 3 in the complement graph are an induced
path P’ (the inner vertices of P) and two sets S}, S4 such that H/US] is a split graph
for i € {1,2} with the property that the left (right) endvertex of P’ is nonadjacent to
exactly one clique vertex of H; (Ha, respectively).

Now consider the case G € co-DS(1) or G € co-DS(2). In these cases, using Py
properties, we find the special vertex x1 (special vertices x1, z2, respectively) as for
G € DS(1) or G € DS(2), and using the techniques of [24], we find the connected
components of G in linear time on input G. ]

Acknowledgment. We are grateful to two anonymous referees for their careful
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