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Abstract. Two graphs G and H with the same vertex set V are P4-isomorphic if every four
vertices {a, b, c, d} ⊆ V induce a chordless path (denoted by P4) in G if and only if they induce a
P4 in H. We call a graph split-perfect if it is P4-isomorphic to a split graph (i.e., a graph being
partitionable into a clique and a stable set). This paper characterizes the new class of split-perfect
graphs using the concepts of homogeneous sets and p-connected graphs and leads to a linear time
recognition algorithm for split-perfect graphs, as well as efficient algorithms for classical optimization
problems on split-perfect graphs based on the primeval decomposition of graphs. The optimization
results considerably extend previous ones on smaller classes such as P4-sparse graphs, P4-lite graphs,
P4-laden graphs, and (7,3)-graphs. Moreover, split-perfect graphs form a new subclass of brittle
graphs containing the superbrittle graphs for which a new characterization is obtained leading to
linear time recognition.
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1. Introduction. Graph decomposition is a powerful tool in designing efficient
algorithms for basic algorithmic graph problems such as maximum independent set,
minimum coloring, and many others. Recently, the modular, the primeval, and the
homogeneous decomposition of graphs attracted much attention. The last two types
of decomposition were introduced by Jamison and Olariu [42] (see also [5]) and are
based on their structure theorem and the concept of P4-connectedness. A P4 is an
induced path on four vertices. A graph G = (V,E) is P4-connected (p-connected for
short) if, for every partition V1, V2 of V with nonempty V1, V2, there is a P4 of G with
vertices in V1 and in V2, called crossing P4. It is easy to see that every graph has
a unique partition into maximal induced p-connected subgraphs, called p-connected
components (p-components for short), and vertices belonging to no P4.

We follow this line of research by introducing and characterizing a new class
of graphs—the split-perfect graphs—for which the p-connected components have a
simple structure generalizing split graphs. As usual, a graph is called a split graph if
its vertex set can be partitioned into a clique and a stable set.

The p-connected components represent the nontrivial leaves in the primeval de-
composition tree, and thus some basic algorithmic problems can be solved in linear
time along the primeval decomposition tree.

The primeval tree is a generalization of the cotree representing the structure of
the well-known cographs, i.e., the graphs containing no induced P4. A cograph or its
complement is disconnected, and the cotree expresses this in terms of corresponding
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cojoin and join operations. The cotree representation of a cograph is essential in
solving various NP-hard problems efficiently for these graphs; see [19, 20] for more
information on P4-free graphs.

The study of P4-free graphs has motivated considering graphs with few P4’s, such
as P4-reducible graphs [37, 40] (no vertex belongs to more than one P4), P4-sparse
graphs [32, 33, 39, 41, 44] (no set of five vertices induces more than one P4), P4-lite
graphs [38] (every set of at most six vertices induces at most two P4’s or a “spider”),
and P4-laden graphs [28] (every set of at most six vertices induces at most two P4’s or
a split graph). Note that in this order, every graph class mentioned in this paragraph
is a subclass of the next one.

Recently, Babel and Olariu [4] considered graphs in which no set of at most
q vertices induces more than t P4’s, called (q, t)-graphs. The most interesting case is
t = q − 4: (4,0)-graphs are exactly the P4-free graphs, (5,1)-graphs are exactly the
P4-sparse graphs, and it turns out that P4-lite graphs form a subclass of (7,3)-graphs.
For all these graphs, nice structural results have been obtained that yield efficient
solutions for classical NP-hard problems. Our new class of split-perfect graphs extends
all of them.

Another motivation for studying graph classes with special P4-structure stems
from the greedy coloring heuristic: Define a linear order < on the vertex set, and then
always color the vertices along this order with the smallest available color. Chvátal [17]
called < a perfect order of G if, for each induced subgraph H of G, the greedy heuris-
tic colors H optimally. Graphs having a perfect order are called perfectly orderable
(see [34] for a comprehensive survey); they are NP-hard to recognize [46]. Because
of the importance of perfectly orderable graphs, however, it is natural to study sub-
classes of such graphs which can be recognized efficiently. Such a class was suggested
by Chvátal in [16]; he called a graph G brittle if each induced subgraph H of G con-
tains a vertex that is not an endpoint of any P4 in H or not a midpoint of any P4

in H. Brittle graphs are discussed in [35, 50, 51]. Babel and Olariu [4] proved that
(7,3)-graphs are brittle, and Giakoumakis [28] proved that P4-laden graphs are brittle.
A natural subclass of brittle graphs, called superbrittle, consists of those graphs G in
which every vertex is not an endpoint of any P4 in G or not a midpoint of any P4 in
G. Split graphs are superbrittle since in a split graph with clique C and stable set S,
every midpoint of a P4 is in C and every endpoint of a P4 is in S. Superbrittle graphs
are characterized in terms of forbidden induced subgraphs in [47]. We will show that
our new class of split-perfect graphs is a subclass of brittle graphs, containing all
superbrittle graphs. Moreover, we construct a perfect order of a split-perfect graph
efficiently, and we obtain a new characterization of superbrittle graphs leading to a
linear time recognition.

Yet another motivation for studying split-perfect graphs stems from the theory of
perfect graphs. A graph G is called perfect if, for each induced subgraph H of G, the
chromatic number of H equals the maximum number of pairwise adjacent vertices in
H. For example, all the above-mentioned graphs are perfect. For more information
on perfect graphs, see [7, 12, 29]. Recognizing perfect graphs in polynomial time is
a major open problem in algorithmic graph theory.1 Two graphs G and H with the
same vertex set V are P4-isomorphic if, for all subsets S ⊆ V , S induces a P4 in G
if and only if S induces a P4 in H. Chvátal [18] conjectured and Reed [48] proved
that two P4-isomorphic graphs are both perfect or both imperfect. Thus, to recognize

1Very recently, Chudnovsky et al. [14], Chudnovsky and Seymour [15], and Cornuéjols, Liu, and
Vušković [22] have announced that perfect graphs can be recognized in polynomial time.
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Fig. 1.1. Elementary graphs illustrated.

perfect graphs it is enough to recognize the P4-structure of perfect graphs: given a
4-uniform hypergraph H = (V, E). Is there a perfect graph G = (V,E) such that
S ∈ E if and only if S induces a P4 in G? This was done for the case when the perfect
graph G is a tree [25, 10, 11], a block graph [8], the line graph of a bipartite graph [52],
a claw-free graph [3], or a bipartite graph [2]. Note that the P4-structure of a (not
necessarily perfect) graph can be recognized in polynomial time [31].

Another question arising from Reed’s theorem is the following: Which (perfect)
graphs are P4-isomorphic to a member of a given class of perfect graphs? Let C be a
class of perfect graphs. Graphs P4-isomorphic to a member in C are called C-perfect
graphs. By Reed’s theorem, C-perfect graphs are perfect. Moreover, they form a class
of graphs which is closed under complementation and contains C as a subclass. Thus,
it is interesting to ask the following question: Assuming that there is a polynomial
time algorithm for testing membership in C, can C-perfect graphs be recognized in
polynomial time, too? First results in this direction are good characterizations of
tree-perfect graphs, forest-perfect graphs [9], and bipartite-perfect graphs [43]. This
paper will give a good characterization of split-perfect graphs.

Definition 1.1. A graph is called split-perfect if it is P4-isomorphic to a split
graph.

Trivial examples of split-perfect graphs are split graphs and P4-free graphs. Non-
trivial examples are induced paths Pn = v1v2 · · · vn for any integer n. To see this we
need some definitions, following [9]. Let (v1, . . . , vn) be a vertex order of a graph G.
Then N>i(vi) denotes the set of all neighbors vk of vi with k > i. A vertex order
(v1, . . . , vn) of G is said to be elementary if for all i

N>i(vi) =

{ {vi+2, vi+3, . . . , vn} for even i,
{vi+1} for odd i.

Graphs having elementary orders are split graphs in which the “odd vertices”
v2k+1 form a stable set and the “even vertices” v2k form a clique. A graph is said to
be elementary if it has an elementary order (see Figure 1.1). If the elementary graph
has at least 4 vertices, then its partition into a clique and a stable set is unique and
can be determined using its degree sequence. Thus, as split graphs in general [30],
elementary graphs can be recognized in linear time.

Obviously, Pn = v1v2 · · · vn is P4-isomorphic to the elementary graph consisting of
the elementary order (v1, . . . , vn). It can be seen that, for n ≥ 7, this elementary graph
is the only split graph (up to “complementation” and “bipartite complementation”)
that is P4-isomorphic to Pn. In section 4, we will extend this example to the so-called
double-split graphs. Double-split graphs play a key role for characterizing split-perfect
graphs.

In section 2, we will show that the class of split-perfect graphs contains all
P4-laden graphs and all (7,3)-graphs (hence all P4-reducible, P4-sparse, and P4-lite



344 ANDREAS BRANDSTÄDT AND VAN BANG LE
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Fig. 1.2. Relationship between graph classes.

graphs). The relationship between the above-mentioned graph classes is shown in
Figure 1.2.

In section 3, we describe forbidden induced subgraphs of split-perfect graphs,
which are needed for characterizing split-perfect graphs.

In section 4, we introduce double-split graphs and show that they are split-perfect.
As already mentioned, double-split graphs are of crucial importance for a good char-
acterization of split-perfect graphs.

In section 5, we characterize split-perfect graphs in terms of forbidden subgraphs
and in terms of their p-connected components: It turns out that for split-perfect
graphs having no homogeneous sets, the p-connected components are double-split
graphs or their complements.

In the last section, section 6, we will point out how classical optimization problems
such as weighted clique number, weighted chromatic number, weighted independence
number, and weighted clique cover number can be solved efficiently, in a divide and
conquer manner, on split-perfect graphs using the primeval decomposition tree. These
results are based on our good characterization of p-connected split-perfect graphs.

2. Preliminaries. Our notation is quite standard. The neighborhood of the
vertex v in a graph G is denoted by NG(v); if the context is clear, we simply write
N(v). The path (respectively, cycle) on m vertices v1, v2, . . . , vm with edges vivi+1
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(respectively, vivi+1 and v1vm) (1 ≤ i < m) is denoted by Pm = v1v2 · · · vm (respec-
tively, Cm = v1v2 · · · vmv1). The vertices v1 and vm are the endpoints of the path Pm,
and for a P4 v1v2v3v4, v2 and v3 are the midpoints of the P4. Graphs containing no
induced subgraphs isomorphic to a graph of a given set H of graphs are called H-free
graphs. It is well-known that split graphs are exactly the (C4, C4, C5)-free graphs [26].

For convenience, we often identify sets of vertices of a graph G and the subgraphs
induced by these sets in G. Thus, for S ⊆ V (G), S also denotes the subgraph G[S]
induced by S.

A set S of at least two vertices of a graph G is called homogeneous if S �= V (G)
and every vertex outside S is adjacent to all vertices in S or to no vertex in S. A graph
is prime if it has at least three vertices and contains no homogeneous set. Obviously,
prime graphs and their complements are connected.

A homogeneous set M is maximal if no other homogeneous set properly contains
M . It is well known that in a connected graph G with connected complement G,
the maximal homogeneous sets are pairwise disjoint (see, e.g., [45]). In this case, the
graph G∗ obtained from G by contracting every maximal homogeneous set to a single
vertex is called the characteristic graph of G. Clearly, G∗ is prime. We shall use the
following useful fact for later discussions (see Figure 3.1 for the graphs Gi).

Lemma 2.1 (see [36]). Every prime graph containing an induced C4 contains an
induced P5 or G3 or G4.

Throughout this paper, we use the fact that, in a graph G = (V,E), every homo-
geneous set S contains exactly one vertex of every P4 crossing S and V \ S.

For the subsequent structure theorem of Jamison and Olariu we need the following
notion: A p-component H of G is called separable if it has a partition into nonempty
sets H1, H2 such that every P4 with vertices from both Hi’s has its midpoints in H1

and its endpoints in H2. Note that a p-connected graph is separable if and only if its
characteristic graph is a split graph [42].

Theorem 2.2 (structure theorem [42]). For an arbitrary graph G, precisely one
of the following conditions is satisfied:

(i) G is disconnected,
(ii) G is disconnected,
(iii) G is p-connected,
(iv) there is a unique proper separable p-component H of G with a partition

(H1, H2) such that every vertex outside H is adjacent to all vertices in H1

and nonadjacent to all vertices in H2.
Based on this theorem, Jamison and Olariu define the primeval decomposition,

which can be described by the primeval decomposition tree and leads to efficient
algorithms for a variety of problems if the p-connected components are sufficiently
simple. We will show that this is the case for split-perfect graphs.

Note that dividing a graph into p-connected components can be done in linear
time (see [6]). This fact together with Proposition 2.3 below allows us to restrict our
attention to p-connected split-perfect graphs only.

Proposition 2.3. A graph is split-perfect if and only if each of its p-connected
components is split-perfect.

Proof. The only if part is clear. To prove the if part, let G be a graph such
that each p-connected component Ai (1 ≤ i ≤ m) of G is P4-isomorphic to a split
graph Bi. Let W be the set of all vertices of G not belonging to any P4. We now
construct, inductively, a split graph Hm P4-isomorphic to G as follows.

First, set H1 := B1∪W . If the split graph Hi (1 ≤ i < m) is already constructed,



346 ANDREAS BRANDSTÄDT AND VAN BANG LE

then Hi+1 is obtained from Hi and Bi+1 by joining every vertex in the clique part of
Hi and every vertex of Bi+1 by an edge.

Clearly,Hm is a split graph. Moreover, Bi (1 ≤ i ≤ m) are exactly the p-connected
components of Hm. Thus, Hm is P4-isomorphic to G.

Observation 2.4. Let G be split-perfect and let H = (CH , SH , EH) be a split
graph P4-isomorphic to G. Assume that each of the sets {a, b, c, u} and {a, b, c, v}
induces a P4 in G. Then exactly one of the following conditions holds:

(i) a, b, c induce a path P3 in H, and u and v are both adjacent in H to an
endpoint of the path H[a, b, c]. In particular, u and v both belong to the
stable-part SH of H.

(ii) The statement (i) holds in H instead of H. In particular, u and v both belong
to the clique-part CH of H.

Proof. Since a, b, c, and u induce a P4 in H, H[a, b, c] must be a P3, or else a P3.
The rest follows from the fact that H is a split graph.

Proposition 2.5. Let G be a p-connected split-perfect graph. Then every homo-
geneous set of G induces a P4-free graph.

Proof. Assume to the contrary, that there is a homogeneous set S in G which
contains an induced P4 x1x2x3x4. As G is p-connected, there is a crossing P4 P to
the partition S and V (G) − S. As S is homogeneous, P has exactly one vertex in
S. Let a, b, c be the three vertices of P outside S. Since S is homogeneous, each of
the sets {a, b, c, xi}, 1 ≤ i ≤ 4, induces a P4 in G. Now, by Observation 2.4, if H
is an arbitrary split graph P4-isomorphic to G, then in H, x1, x2, x3, x4 are pairwise
nonadjacent, or else pairwise adjacent. In particular, H[x1, x2, x3, x4] cannot be a P4,
a contradiction.

Proposition 2.6. Let G be a p-connected graph. G is split-perfect if and only if
(i) every homogeneous set of G induces a P4-free graph, and
(ii) G∗ is split-perfect.
Proof. The necessity is clear, because of Proposition 2.5 and the fact that G∗

is (isomorphic to) an induced subgraph of G. We now prove the sufficiency. Let
G∗ be P4-isomorphic to a split graph H. For each vertex v of G∗ let Mv be the
corresponding maximal homogeneous set in G. Let H ′ be the graph obtained from H
by replacing each vertex v by the complete graph on vertex set Mv (if v belongs to
the clique part of H), respectively, be the stable set Mv (otherwise). Clearly, H ′ is a
split graph. Since the sets Mv contain no P4, G and H ′ are P4-isomorphic (extend a
P4-isomorphism between G∗ and H to one between G and H ′ in a natural way).

Propositions 2.3 and 2.6 allow us to consider only p-connected split-perfect graphs
without homogeneous sets.

Recall that P4-laden graphs are those graphs in which every set of at most six
vertices induces at most two P4’s or a split graph.

Corollary 2.7.
(i) P4-laden graphs are split-perfect.
(ii) (7,3)-graphs are split-perfect.
Proof. To prove (i), let G be a p-connected P4-laden graph. Then

every homogeneous set of G consisting of more than two vertices is a stable set,

otherwise, let M be a homogeneous set with at least three vertices a, b, c, where a and
b are adjacent. By the p-connectedness, there is a crossing P4 P for M and V (G)−M .
As M is homogeneous, |V (P )∩M | = 1. Now, (V (P )−M)∪{a, b, c} consists of exactly
six vertices, induces three P4’s, but does not induce a split graph, a contradiction.
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Now, it was proved in [28, Theorem 10] that

G∗ is a P5 or P5 or a split graph.

In particular, G∗ is split-perfect and (i) follows from Propositions 2.6 and 2.3.
To prove (ii), we first show the following claims; the first one is easy to see; the

second one follows from the known inclusions (6,2) ⊂ P4-lite ⊂ P4-laden and (i).
Claim 1. Every graph with at most five vertices, different from the C5, is split-

perfect.
Claim 2. (6,2)-graphs are split-perfect.
Now, consider a p-connected (7,3)-graph G. We have to show that G is split-

perfect. It was shown in [4, Theorem 4.5] that G has at most six vertices. By Claims
1 and 2, we may assume that G has exactly six vertices and exactly three P4’s.

If G has a homogeneous set, G∗ is split-perfect by Claim 1 and every homogeneous
set has at most three vertices (otherwise, the p-connectedness would imply that G
has four P4’s). Hence, by Proposition 2.6, G is split-perfect. So, let G have no
homogeneous set.

If G or G has a P5, say G, then (by considering the neighbors of the vertex
outside the P5) G is a P6 or the graph with vertices vi (1 ≤ i ≤ 6) and edges vivi+1

(1 ≤ i ≤ 5), v2v6, and v3v6 (otherwise G has a homogeneous set or four P4’s). In each
case, G is split-perfect.

If G is (P5, P5)-free, then G cannot contain an induced C4 or C4. Otherwise, by
Lemma 2.1, G would contain a G3, G3, G4, or G4, but each of these graphs has more
than three P4’s, a contradiction. Thus, G is (C4, C4, C5)-free; i.e., G is a split graph
and (ii) follows.

3. Forbidden induced subgraphs for split-perfect graphs. As a conse-
quence of Observation 2.4, we give a list of forbidden induced subgraphs of split-
perfect graphs: These are the induced cycles Ck of length k ≥ 5, the graphs Gi

(1 ≤ i ≤ 8) shown in Figure 3.1, and their complements. It turns out (Theorem 5.1)
that these forbidden induced graphs characterize prime split-perfect graphs.

We need some notions. Let G and G′ be two graphs with the same vertex set. An
induced P4 in G is bad if its vertices do not induce a P4 in G′ (thus, P4-isomorphic
graphs do not have bad P4’s).

Another useful notion is suggested by Observation 2.4: Let G be a split-perfect
graph and H a corresponding split graph having the same P4-structure. We call the
clique and the stable set of H the two classes of H. Two vertices x, y in G are called
equivalent (x ∼ y) if they are in the same class of H. Clearly, ∼ is an equivalence
relation on the vertex set of a split-perfect graph.

Now, Observation 2.4 means that in a split-perfect graph G, vertices x and y are
in the same class (i.e., x ∼ y) if there are vertices a, b, c ∈ V (G) − {u, v} such that
{a, b, c, x} and {a, b, c, y} both induce a P4.

Therefore, in a split-perfect graph, pairwise equivalent vertices induce a P4-free
subgraph.

Recall that a P4 in a split graph H has its two midpoints in one class and its two
endpoints in the other class. Thus, if G is P4-isomorphic to H, then every P4 P of G
must be balanced with respect to H; i.e., P has exactly two vertices in one class and
the other two vertices in the other class.

Lemma 3.1. None of the graphs Ck, Ck (k ≥ 5), and Gi, Gi (1 ≤ i ≤ 8) in
Figure 3.1 is split-perfect.

Proof. Throughout this proof, we will extensively use the facts discussed above.
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Note that G is not split-perfect if and only if G is not split-perfect. Thus we only
show that none of Ck, k ≥ 5, and Gi, 1 ≤ i ≤ 8, is split-perfect.

Consider Ck for odd k ≥ 5. In this case, all vertices of the Ck are pairwise
equivalent, which means that Ck is not split-perfect. (Note that for odd cycles Ck,
k ≥ 5, it also follows from Reed’s theorem that they are not split-perfect because they
are not perfect.)

Let k = 2n ≥ 6 and write Ck = v1v2 . . . v2n. In this case, all odd vertices v2i−1

are pairwise equivalent and all even vertices v2i are pairwise equivalent. Thus, if C2n

is split-perfect and H is a corresponding split graph, then, by balance, one class of
H consists of exactly the vertices v2i−1 and the other class consists of exactly the
vertices v2i. Now it is a matter of routine to check that in any realization of the split
graph H some P4 in C2n must be bad.

Assume that G ∈ {G1, G3, G4} is split-perfect and let H be a corresponding split
graph. Then 2 ∼ 4 ∼ 6. Since the P4’s in G are balanced, the classes of H are {2, 4, 6}
and {1, 3, 5}. Again, it is a matter of routine to check that in any realization of the
split graph H some P4 in G must be bad.

Similary, assume that G ∈ {G2, G6} is split-perfect and let H be a corresponding
split graph. Then 1 ∼ 2 ∼ 5. By balance, the classes of H are {1, 2, 5} and {3, 4, 6}.
Again, it is a matter of routine to check that in any realization of the split graph H
some P4 in G must be bad.

If G5 is split-perfect, then 1, 3, 4, 5, and 6 are pairwise equivalent. But then no
P4 in G5 is balanced.

If G7 is split-perfect, then 3 ∼ 4 ∼ 7. Since every P4 of G7 has two vertices
in {3, 4, 7}, it follows by balance that every corresponding split graph H has classes
{3, 4, 7} and {1, 2, 5, 6}. Again, it is a matter of routine to check that in any realization
of the split graph H some P4 in G7 must be bad.

Finally, if G8 is split-perfect, then 1, 2, 3, and 4 are pairwise equivalent, but
induce a P4.

4. Double-split graphs. We define now the class of double-split graphs gen-
eralizing the split graphs and playing a key role in the subsequent characterization
of split-perfect graphs. As an important step towards this characterization, we will
show that double-split graphs are split-perfect.

Definition 4.1. A graph is called double-split if it can be obtained from two
disjoint (possibly empty) split graphs GL = (QL, SL, EL), GR = (QR, SR, ER) and
an induced path P = P [xL, xR], possibly empty, by adding all edges between xL and
vertices in QL and all edges between xR and vertices in QR (see Figure 4.1).

Remark. Every split graph is double-split as the case of an empty path P and an
empty split graph GR shows.

Lemma 4.2. Double-split graphs are split-perfect.
Proof. Let G be a double-split graph consisting of two split graphs GL =

(QL, SL, EL), GR = (QR, SR, ER) with cliques QL, QR and stable sets SL, SR. If
the path P connecting GL and GR is empty, then G is P4-isomorphic to the following
split graph H = (QL ∪QR, SL ∪ SR, EH) obtained from GL and GR by adding a join
between QL and QR and between SL and QR.

Now assume that P = v3v4 . . . vi, i ≥ 3, such that xL = v3 is adjacent to all
vertices of QL and xR = vi is adjacent to all vertices of QR. We construct a split
graph H = (QH , SH , EH) with the same P4-structure as G. Hereby we use the fact
that induced paths P ′ = v1v2v3v4 . . . vivi+1vi+2 are split-perfect and can be realized
by the elementary split graph GP ′ = ({v2, v4, v6, . . .}, {v1, v3, v5, . . .}, EP ′). We will
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Fig. 4.1. Double-split graphs illustrated.

see that this split graph GP ′ can be extended to H by replacing v1 by SL, v2 by QL,
vi+1 by QR, and vi+2 by SR in a suitable way. Moreover, we use the following simple
property of split graphs.

Claim. Let G = (Q,S,E) be a split graph and let G′ = (Q,S,E′) be the following
bipartite complement of G: For all x ∈ Q and all y ∈ S, xy ∈ E′ ⇐⇒ xy /∈ E. Then
G and G′ are P4-isomorphic.

We construct the split graph H = (QH , SH , EH) depending on the parity of |P |;
see Figure 4.2.

QH :=

{
QL ∪ {v4, v6, . . . , vi−1} ∪QR if i is odd,
QL ∪ {v4, v6, . . . , vi} ∪ SR otherwise,

SH :=

{
SL ∪ {v3, v5, . . . , vi} ∪ SR if i is odd,
SL ∪ {v3, v5, . . . , vi−1} ∪QR otherwise.

Now EH consists of the following edges based on the edge set of GP ′ and on
EL, ER and depending on the parity of |P |:

(1) vertices in QH are pairwise adjacent;
(2) the EH -edge set between SL and QL is EL;
(3) the EH -edge set between QR and SR is the bipartite complement of ER if i

is odd and is ER otherwise;
(4) there is a join between QL and SR (due to the fact that there is an edge

between v2 and vi+2 in GP ′) if i is odd and there is a join between QL and
QR otherwise;

(5) vertices from {v3, v4, . . . , vi} have a join to a set from SL, QL, QR, SR if and
only if there is an edge in GP ′ to the corresponding vertex from {v1, v2,
vi+1, vi+2}. Thus, for odd i, QL has a join to v5, v7, . . . , vi, all vertices x ∈
{v4, v6, . . . , vi−1} have a join to SR, and QR has a join to vi; if i is even, then
QL has a join to v5, v7, . . . , vi−1, and all vertices x ∈ {v4, v6, . . . , vi−2} have
a join to QR;

(6) the edges between vertices from v3, v4, . . . , vi are the same as in GP ′ .
We claim that G and H are P4-isomorphic. First we show that every P4 of G is

a P4 in H. There are the following types of P4’s in G:
(a) P4’s in GL and P4’s in GR;
(b) xyv3v4 with x ∈ SL, y ∈ QL, xy ∈ EL (for i = 3 replace v4 by a vertex

z ∈ QR);
(c) xv3v4v5 for x ∈ QL (for i = 3 replace v4 by a vertex y ∈ QR and v5 by a

vertex z ∈ SR);
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Fig. 4.2. Construction for i = 3 (left) and i = 4 (right); bc(E) means the bipartite complement
of E.

(d) P4’s in v3, v4, . . . , vi (for i ∈ {3, 4, 5} there are no such P4’s);
(e) vi−2vi−1vix with x ∈ QR (for i = 3 this corresponds to case (b), for i = 4

replace vi−2 by z ∈ QL);
(f) vi−1vixy with x ∈ QR, y ∈ SR, xy ∈ ER (for i = 3 replace vi−1 by z ∈ QL).
Type (a) for GL is obviously fulfilled by construction of H, and for GR, the

bipartite complement of GR in H ensures the property if i is odd, and is obvious in
the other case.

Types (b), (c), (d), (e) are obviously fulfilled.
Type (f): For the P4 vi−1vixy with x ∈ QR, y ∈ SR, xy ∈ ER, if i is odd, then

xy is not an edge in the bipartite complement of GR, and thus vixvi−1y is a P4 in H.
If i is even, xy is an edge in EH and vi−1viyx is a P4 in H.

Now consider a P4 in H. According to the definition of H this is either a P4

between QL and SL which is the same as in GL, or a P4 between QR and SR which,
for odd i, is the same as in GR due to the bipartite complement and, for even i, is
obviously the same as in GR, or a P4 which goes back to GP ′ but GP ′ realizes exactly
the P4’s of the induced path P ′ which are P4’s in G as well.

Double-split graphs and their complements can be recognized in linear time due
to their simple structure as we will show in the appendix.

5. The structure of split-perfect graphs. Now we are able to describe prime
split-perfect graphs as follows.

Theorem 5.1. Let G be a prime graph. Then the following statements are
equivalent:

(i) G is split-perfect;
(ii) G has no induced subgraphs Ck, Ck (k ≥ 5), Gi, Gi (1 ≤ i ≤ 8);
(iii) G or G is a double-split graph.
Theorem 5.1 and Propositions 2.3 and 2.6 immediately yield the following

theorem.
Theorem 5.2. A graph G is split-perfect if and only if each of its p-connected

components H has the following properties: Every homogeneous set in H induces a
P4-free graph, and H∗ is a double-split graph or the complement of a double-split
graph.

Proof of Theorem 5.1. The implication (i) ⇒ (ii) follows from Lemma 3.1, and
the implication (iii) ⇒ (i) follows from Lemma 4.2. Note that these two implications
hold in general, not only for p-connected graphs or prime graphs.

We now complete the proof by showing (ii) ⇒ (iii), where we will make use of the
primality as follows.
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Observation 5.3. Let G be prime and let H be a P4-free induced subgraph of G.
If H is not a stable set (a clique, respectively), then there exist adjacent (nonadjacent,
respectively) vertices x, y in H and a vertex z outside H such that z is adjacent to x
and nonadjacent to y.

Proof. Assume that H is not a stable set (the case that H is not a clique can be
seen similarly). Let S ⊆ H be maximal such that H[S] has no isolated vertices. As
H is not a stable set, |S| ≥ 2. It is well known that P4-free graphs with at least two
vertices contain two vertices u and v with N(u) = N(v) or N(u) ∪ {u} = N(v) ∪ {v}
(so-called twins). Let {u, v} be twins in S. As G is prime, there is a vertex z /∈ S
adjacent to u and nonadjacent to v. By definition of S, z /∈ H. If u and v are adjacent,
then we are done by setting x = u and y = v. Thus, let u and v be nonadjacent.
By definition of S, u is adjacent to another vertex w in S which is also adjacent to v
because {u, v} is homogeneous in S. Now, we are done by setting x = u, y = w (if z
is nonadjacent to w), or x = w, y = v (otherwise).

Let G be a prime graph satisfying the statement (ii). If G is (P5, P5)-free, then
by Lemma 2.1 G cannot contain a C4 or a C4 (otherwise G would contain a G3, G3,
G4, or G4). Hence G is (C4, C4, C5)-free, i.e., G is a split graph and we get (iii).

Therefore, we may assume that G contains a P5 or a P5. By considering comple-
mentation if necessary, assume that G has an induced P5. Consider a longest induced
path P = v1v2 . . . vk in G. By assumption, k ≥ 5. Now we are going to show, by a
number of claims, that G is a double-split graph.

Claim No-Middle. For every 2 < i < k − 1,

(N(vi−1) ∩N(vi+1))− (N(vi−2) ∪N(vi+2)) = {vi}.

Proof. Let H = (N(vi−1) ∩N(vi+1)) − (N(vi−2) ∪N(vi+2)). Then H induces a
P4-free graph, otherwise G would have a G8. Thus, assuming H �= {vi}, H has twins
{x, y}. As G has no homogeneous set, there is a vertex z /∈ H such that zx ∈ E(G)
but zy /∈ E(G). We distinguish between three cases.

Case 1. z is adjacent to both vi−1 and vi+1.
By definition of H and z /∈ H, z must be adjacent to vi−2 or vi+2. By symmetry,

let zvi−2 ∈ E(G). Now, if z is also adjacent to vi+2, then vi−2, vi−1, vi+1, vi+2, y, z
induce a G6. If z is nonadjacent to vi+2, then the same vertices induce a G5. Case 1
is settled.

Case 2. z is adjacent to vi−1 and nonadjacent to vi+1 (or vice versa).
Then z cannot be adjacent to vi+2 (otherwise there is a C5). Now, if x and y are

adjacent, then there is a G2, and if x, y are nonadjacent, then there is a G5. Case 2
is settled.

Case 3. z is nonadjacent to both vi−1 and vi+1.
First, assume xy ∈ E(G). Then z cannot be adjacent to vi−2 or to vi+2 (otherwise

there is a G5). But then vi−2, vi−1, x, vi+1, vi+2, z induce a G1. Second, assume
xy /∈ E(G). Then there is a G3 (if z is adjacent to vi−2) or a G4 (otherwise). Case 3
is settled.

Let M be the set of all vertices outside P adjacent to a vertex in P but not to all
vertices in P .

Claim N. For every v ∈ M , N(v) ∩ P = {v2} or {v2, v3} or {v1, v2, v3} or
{vk−1} or {vk−2, vk−1} or {vk−2, vk−1, vk}.

Proof. Since G does not have a C� (# ≥ 5), G2, G2, G3, G5, or G6, every vertex
in M has at most three neighbors in P . We distinguish between three cases.

Case 1. |N(v) ∩ P | = 3.
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Then N(v) ∩ P is a subpath of P , otherwise G would have a C� for some # ≥ 5,
or a G3 or G5 or a G6. Thus N(v) ∩ P = {vi−1, vi, vi+1} for some suitable i. Now,
by Claim No-Middle, i = 2 or i = k − 1, and Case 1 is settled.

Case 2. |N(v) ∩ P | = 2.
We first claim that N(v) ∩ P is a subpath of P . Assume to the contrary that

the two neighbors of v in P are nonadjacent. Then there is a suitable i such that
N(v) ∩ P = {vi−1, vi+1}, otherwise G would have a C� for some # ≥ 5. Now, by
Claim No-Middle, i = 2 or i = k − 1. By symmetry we only consider the case
N(v) ∩ P = {v1, v3}.

Let H = (N(v1) ∩ N(v3) ∩M) ∪ {v2}. Note that no vertex in H is adjacent to
a vj , j ≥ 4 (as we have seen in Case 1). Thus H is P4-free (otherwise G would have
a G8). Since H is not a clique (it contains v and v2), there exist, by Observation 5.3,
nonadjacent vertices x, y ∈ H and a vertex z /∈ H adjacent to x but nonadjacent to
y. Note that z ∈ M : If z is nonadjacent to P , then v1, v3, x, y, z, v4 induce a G4. If z
is adjacent to all vi’s, then v1, v3, v4, v5, y, z induce a G5. Now, if zv3 ∈ E(G), then
zv1 /∈ E(G) (otherwise z ∈ H). But then v1, v3, v4, x, y, z induce a G2 or a G5. Thus,
zv3 /∈ E(G). But then v1, v3, v4, x, y, z induce a G3 or contain a C5 depending on
zv1 ∈ E (if zv4 ∈ E(G)) or a G4 or a G5 (if zv4 /∈ E(G)).

We have shown that the two neighbors of v on P are vi and vi+1 for some suitable
i. Since G has no G7, i ∈ {1, 2, k− 1, k− 2}. We are going to show that i ∈ {2, k− 2}
holds. By symmetry, we only show i �= 1.

Assume to the contrary that i = 1. Let H = N(v2) − N(v3). Then no vertex
in H is adjacent to vj , j ≥ 4 (as we have seen in Case 1). Thus, H is P4-free
(otherwise G would have a G8). Since H is not a stable set (it contains v and v1),
there exist, by Observation 5.3, adjacent vertices x, y ∈ H and vertex z /∈ H adjacent
to x but nonadjacent to y. If zv2 ∈ E(G), then zv3 ∈ E(G) (otherwise z ∈ H)
and v2, v3, v4, x, y, z induce a G2 or a G4. Thus zv2 /∈ E(G), hence also zv3 /∈ E(G)
(otherwise v2, v3, v4, x, y, z induce a G5 or a G3). But then zxv2v3 · · · vk is an induced
path longer than P , or else z is adjacent to some vj , j ≥ 4, yielding a Cj+1.

This shows that i �= 1 and, by symmetry, i �= k − 1. We have proved Claim N in
Case 2.

Case 3. |N(v) ∩ P | = 1.
Then N(v) ∩ P = {v2} or N(v) ∩ P = {vk−1}. Otherwise G would have a G1, or

there is an induced path longer than P . Claim N is proved in Case 3.
Let QL = N(v3)− (N(v4) ∪N(v5)).
Claim QL. QL is a clique.
Proof. First note that QL induces a P4-free graph (otherwise G would have a G8).

Now, assume to the contrary that QL is not a clique. By Observation 5.3, there exist
nonadjacent vertices x, y ∈ QL and vertex z /∈ QL adjacent to x but nonadjacent to
y. We distinguish between two cases.

Case 1. z and v3 are nonadjacent.
If zv4 /∈ E(G), then x, y, z, v3, v4, v5 induce a G1 if zv5 /∈ E, else z, x, v3, v4, v5 is

a C5. If zv4 ∈ E(G), then, by Claim N, zv5 /∈ E(G) and G has a G4. Case 1 is settled.
Case 2. z and v3 are adjacent.
Then z ∈ M . Because, if z is adjacent to all vi’s, then y cannot be adjacent to

v2 (otherwise G would have a G4 induced by y, v2, v3, v4, v5, and z). By Claim N,
y is also nonadjacent to v1. But then G has a G1.

Now, by definition of QL, z must be adjacent to v4 or v5, and by Claim N, z is
adjacent to v4 and nonadjacent to v2. Thus x cannot be adjacent to v2, otherwise
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v2, v3, v4, v5, x, z induce a G2 (if zv5 /∈ E(G)) or a G4 (if zv5 ∈ E(G)). Therefore, by
Claim N, x cannot be adjacent to v1. But then v1, v2, v3, v4, v5, x induce a G1. Case 2
is settled.

Let T be the set of all vertices that are adjacent to all vertices in P , and let
SL = N(QL)− ({v3} ∪ T ).

Claim SL. SL is a stable set.
Proof. We first show that

v ∈ SL =⇒ vvi /∈ E(G), i ≥ 3.(5.1)

Proof of (5.1). Assume first that v is adjacent to v3. By definition of QL, v must
be adjacent to v4 or to v5 (otherwise v would belong to QL, contradicting v ∈ SL).
Thus, by Claim N, v is adjacent to v4 and is nonadjacent to v1, v2. Now, a neighbor
x in QL of v together with v1, v2, v3, v4, and v induce a G2 (if xv1 /∈ E(G)) or a G4

(otherwise). We have shown that v is nonadjacent to v3. Next, if vv4 is an edge, then,
by Claim N, v is nonadjacent to v1 and v2, and so a neighbor x in QL together with
v1, v2, v3, v4, v induce a G6 or a G5. Thus v is nonadjacent to v4. Finally, v cannot
be adjacent to vi for any i ≥ 5 because G does not have a C�, # ≥ 5. Thus, (5.1) is
proved.

Next, we show that

for every two adjacent vertices u, v ∈ SL, N(u) ∩QL = N(v) ∩QL.(5.2)

Proof of (5.2). Assume that there is a vertex x ∈ QL adjacent to u but nonadja-
cent to v, say. Let y ∈ QL be a neighbor of v. Then by (5.1), u, v, x, y, v3, v4 induce
a G2 (if yu ∈ E(G)) or a G6 (otherwise). This contradiction proves (5.2).

We furthermore show that

SL induces a P4-free graph.(5.3)

Proof of (5.3). If not, then by (5.2), there is a vertex in QL adjacent to all vertices
of a P4 in SL. By (5.2), G would have a G8. This proves (5.3).

Now, to finish the proof of Claim SL, assume that SL is not a stable set. By
Observation 5.3, there exist adjacent vertices u, v ∈ SL and vertex w /∈ SL adjacent
to u but nonadjacent to v. By (5.2), w /∈ QL.

Since w /∈ SL, w cannot have a neighbor in QL, and it can be seen, as in the
proof of (5.1), that w cannot be adjacent to vi, i ≥ 3. But then wuxv3v4 · · · vk, where
x ∈ QL is a neighbor of u, is an induced path longer than P . The proof of Claim SL
is complete.

Let QR = N(vk−2)− (N(vk−3)∪N(vk−4)) and SR = N(QR)− ({vk−2} ∪ T ). By
symmetry, we have the following claims.

Claim QR. QR is a clique.
Claim SR. SR is a stable set.
Note that from the definition it follows that QL∩QR = ∅, and from Claim N and

the forbidden G6 it follows that SL ∩ SR = ∅.
Claim NOE (no other edge). There is no edge between QL ∪ SL and QR ∪ SR.
Proof. Let x ∈ QL ∪ SL and y ∈ QR ∪ SR be two adjacent vertices. Since P is

an induced path and by Claim N, x, y /∈ {v1, v2, vk−1, vk}. Then x /∈ QL (otherwise
y would belong to SL) and y /∈ QR (otherwise x would belong to SR). Thus, x ∈ SL

and y ∈ SR, yielding a Ck, k ≥ 5. This contradiction proves Claim NOE.
Claim NOV (no other vertex). V (G) = P ∪M ∪ SL ∪ SR ∪ T .
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Proof. If there is a vertex v /∈ P ∪M ∪ SL ∪ SR ∪ T , then, as G is connected (it
has no homogeneous set), v must be adjacent to some vertex in SL ∪ SR. But then
there is an induced path longer than P .

Claim T. T = ∅, i.e., there is no vertex adjacent to all vertices of P .
Proof. Assume there is a vertex v adjacent to all vi’s. Then v is adjacent to all

vertices in QL (and in QR), otherwise G would have a G4. Also, v is adjacent to all
vertices in SL (and in SR), otherwise G would have a G2.

Thus, every vertex from T is adjacent to all vertices in G−T , implying, by Claim
NOV, that G−T is a homogeneous set in G. This contradiction proves Claim T.

It follows from the claims that G is a double-split graph (with the two split
graphs formed by QL, SL and QR, SR, respectively). The proof of Theorem 5.1 is
complete.

Corollary 5.4. Split-perfect graphs can be recognized in linear time.
Proof. This follows from Theorem 5.2 and the facts that
• the p-connected components of a graph can be found in linear time [6];
• all maximal homogeneous sets of a (p-connected) graph G can be found in
linear time [23, 24, 45];

• P4-free graphs can be recognized in linear time [21] (for a new and sim-
pler 3-sweep lexicographic breadth-first search algorithm recognizing P4-free
graphs in linear time, see [13]); and

• double-split graphs and their complements can be recognized in linear time
(see the appendix).

In the remainder of this section we will show that the class of split-perfect graphs
lies between the classes of superbrittle graphs and of brittle graphs. We first give a
new characterization of superbrittle graphs in the following theorem.

Theorem 5.5. A graph G is superbrittle if and only if for each of its p-connected
components H of G,

(i) the homogeneous sets of H are cographs, and
(ii) the characteristic graph H∗ is a split graph.
Proof. Assume first that G is superbrittle. Then, since the graphs G8 and

G8 (see Figure 3.1) are not superbrittle, homogeneous sets in p-connected compo-
nents are P4-free; otherwise a crossing P4 leads to an induced subgraph G8 or G8.
Now we show condition (ii). Note first that obviously superbrittle graphs are also
(P5, P5, C5, G4, G4)-free (for G4 and G4, see Figure 3.1). Then, due to Lemma 2.1,
H∗ is C4-free since a C4 in a characteristic graph extends into a P5 or G3 or G4 but
the G3 contains a P5. The same holds for the complements which means that H∗ and
its complement are chordal, i.e., H∗ is a split graph.

Now let G be a graph fulfilling the conditions (i) and (ii) for all its p-connected
components. We are going to show that G is superbrittle. Since the property to be
superbrittle is a P4 condition, it is sufficient to show that the p-connected components
H ofG are superbrittle. Note that split graphs are superbrittle, i.e.,H∗ is superbrittle.
Furthermore, by substituting cographs as homogeneous sets into vertices of a split
graph, no midpoint of a P4 in H∗ can become an endpoint in H and no endpoint of
a P4 in H∗ can become a midpoint in H since homogeneous sets contain at most one
vertex of a P4. This shows that H is superbrittle, and thus G is superbrittle.

Theorem 5.5 immediately implies the following.
Corollary 5.6. Superbrittle graphs are split-perfect and can be recognized in

linear time.
Corollary 5.7. Split-perfect graphs are brittle. Moreover, a perfect order of a

split-perfect graph can be constructed efficiently.
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Proof. Since there is no crossing P4 for two p-connected components, a graph is
brittle if and only if each of its p-connected components is brittle. Now, if G is a
p-connected split-perfect graph, then G∗ is chordal or the complement of a chordal
graph (Theorem 5.2); hence G∗ is brittle. Let v be a vertex in G∗ that is not an
endpoint (a midpoint) of any P4 in G∗. Then, by Proposition 2.5, every vertex in the
homogeneous set in G corresponding to v is not an endpoint (a midpoint, respectively)
of any P4 in G. Since every induced subgraph of a split-perfect graph is again split-
perfect, it follows that split-perfect graphs are brittle.

Moreover, a perfect order of a split-perfect graph can be constructed as follows:
Note that a perfect order of a chordal graph (the complement of a chordal graph) can
be found by constructing a perfect elimination order and reversing its order. Now, a
perfect order of G∗ yields, in a natural way, a perfect order of G. Combining these
perfect orders on the p-connected components in an arbitrary sequence, we obtain a
perfect order of a split-perfect graph.

6. Optimization in split-perfect graphs. As already mentioned, Theorem
2.2 implies a decomposition scheme, called primeval decomposition, for arbitrary
graphs. The corresponding tree representation, called primeval tree, has the
p-connected components and vertices not belonging to any P4 of the considered graph
as its leaves.

The important features of the primeval tree of a given graph G are the following:
• If an optimization problem such as weighted clique number, weighted chro-
matic number, weighted independence number, and weighted clique cover
number can be solved efficiently on the p-connected components of G, then
one can also efficiently solve the problem on the whole graph G; see, for
example, [1].

• The primeval tree can be constructed in linear time; see [6].
Based on these facts, linear time or at least polynomial time algorithms have been

found for classical NP-hard problems on many graph classes such as (q, q− 4)-graphs
and various subclasses. We now point out how to compute the weighted clique size
ωw(G) and the weighted independence number αw(G) for p-connected split-perfect
graphs G efficiently.

First, we shall use the following facts:
• The weighted clique number of a chordal graph can be computed in linear
time (well known).

• The weighted independence number of a chordal graph can be computed in
linear time as pointed out by Frank [27].

Second, let H be a homogeneous set in G and let G/H be the graph obtained
from G by contracting H to a single vertex vH . Then it is well known (and easy to
see) that

ωw′(G/H) = ωw(G), respectively, αw′(G/H) = αw(G),

where the weighting w′ is obtained from w by defining w′(vH) = ωw(G[H]), respec-
tively, w′(vH) = αw(G[H]).

Thus, if ωw(G
∗) and ωw(H) (respectively, αw(G

∗) and αw(H)), H a homogeneous
set in G, can be computed in linear time, then ωw(G) (respectively, αw(G)) can be
computed in linear time, too.

Now, if G is a p-connected split-perfect graph, then by Theorem 5.1, G∗ is a
double-split graph or the complement of a double-split graph. In any case, G∗ is a
chordal graph or the complement of a chordal graph. If G is chordal, then ωw(G

∗)
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and αw(G
∗) can be computed in linear time. If G∗ is the complement of a chordal

graph, then, by considering G∗, ωw(G
∗) and αw(G

∗) can be computed in O(n2) time
(n is the vertex number of G). Furthermore, by Proposition 2.5, every homogeneous
set H of G induces a P4-free graph; hence ωw(H) and αw(H) can be computed in
linear time. This and the facts that the primeval tree of G as well as all maximal
homogeneous sets of G can be found in linear time show that ωw(G) and αw(G) can
be computed in O(n2) time.

The problems of weighted chromatic number and weighted clique cover number
can be solved similarly; we omit the details. Note that for perfect graphs in general
and in particular for split-perfect graphs, the weighted chromatic number equals the
weighted clique number, and the weighted independence number equals the weighted
clique cover number. Thus, we can state the following result.

Theorem 6.1. The weighted clique number, the weighted chromatic number, the
weighted independence number, and the weighted clique cover number of a split-perfect
graph can be computed in O(n2) time.

Appendix. Linear-time recognition of double-split graphs and their
complements. Let DS(k) denote the class of double-split graphs (H1, P,H2) with
split graphs H1 and H2 and k vertices in the induced path P connecting H1 with H2,
and let DS =

⋃
k≥1 DS(k).

Theorem A.1. Double-split graphs and their complements can be recognized in
linear time.

Proof. For a given graph G = (V,E) we have to check whether there is a k ≥ 1
such that G ∈ DS(k). Observe that for G = (H1, P,H2) ∈ DS(k) with k ≥ 3, the
path P = x1 . . . xk contains at least one inner vertex of degree 2.

Thus, in order to check whether G ∈ DS(k) for k ≥ 3, determine the set D2 of
vertices of degree 2 in G (in the nondegenerate case, D2 contains no clique vertices
from H1, H2 and thus D2 is stable) and check whether G \ D2 is the disjoint union
of two split graphs H ′

1, H
′
2. Moreover, check whether D2 is the disjoint union of an

induced path P ′ (the inner vertices of P ) and a stable set S′. S′
i consists of the

vertices in S′ adjacent to some vertex in H ′
i for i ∈ {1, 2} (i.e., H ′

i ∪S′
i is a split graph

Hi with the property that the left (right) endvertex of P ′ is adjacent to exactly one
clique vertex of H1 (H2, respectively)).

Now consider the case G ∈ DS(1) or G ∈ DS(2). We give an argument using P4

properties that is similar for the complement graphs.
Case (G ∈ DS(1)). For a given G we have to identify the vertex x1 of P . If

G ∈ DS(1), G has the following two types of P4’s:
(1) P4’s abcd contained in H1 (H2, respectively);
(2) P4’s abx1d containing x1 as a midpoint.
Thus for a given G, find a P4 in linear time if there is any (the case that G contains

no P4 reduces to threshold graphs or two cliques intersecting in exactly one vertex),
and check whether one of the midpoints of the P4 (of type (2)) is a cutpoint of G
such that the connected components are split graphs and the midpoint is completely
adjacent to both of the cliques. If none of the midpoints is a cutpoint, then check the
P4 abcd (of type (1)) for the following property: Let N := N(b)∩N(c)∩N(a)∩N(d),
where N(v) is the set of all nonneighbors of v. Check whether the two nontrivial
connected components of G′ := G \N are split graphs. If yes, then one of these split
graphs (namely the one not containing the P4) must have exactly one neighbor x1

in N . Now check whether the neighborhoods of x1 in the two components H1, H2 of
G \ {x1} are cliques C1, C2 such that Hi \ Ci are stable.
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Case (G ∈ DS(2)). For a given G we have to identify the vertices x1, x2 of P . If
G ∈ DS(2), G has the following three types of P4’s:

(1) P4’s abcd contained in H1 (H2, respectively);
(2) P4’s abx1x2 containing x1 as a midpoint and x2 as an endpoint;
(3) P4’s ax1x2b containing x1, x2 as midpoints.
Again we start with determining any P4 in G. For types (2) and (3), try deter-

mining whether the midpoints of the P4 are cutpoints and the connected components
fulfill the required properties. For type (1), similar arguments as in case G ∈ DS(1)
will work.

Let co-DS(k) denote the complement graphs of DS(k) graphs. We first describe
linear time recognition of co-DS(k) graphs for k ≥ 3. As for DS(k) graphs, the inner
vertices of the path P have to fulfill a degree condition which is now degree n − 3.
Thus, in order to check whether G ∈ co-DS(k) for k ≥ 3, determine the set Dn−3

of vertices of degree n − 3 in G and check whether G \Dn−3 is the join of two split
graphs H ′

1, H
′
2. In order to check this in linear time, use the techniques of [24] in order

to determine the (two nontrivial) connected components H ′
1, H

′
2 in the complement

graph G for a given G and check whether they are split graphs. Moreover, check
whether the connected components of Dn−3 in the complement graph are an induced
path P ′ (the inner vertices of P ) and two sets S′

1, S
′
2 such that H ′

i ∪S′
i is a split graph

for i ∈ {1, 2} with the property that the left (right) endvertex of P ′ is nonadjacent to
exactly one clique vertex of H1 (H2, respectively).

Now consider the case G ∈ co-DS(1) or G ∈ co-DS(2). In these cases, using P4

properties, we find the special vertex x1 (special vertices x1, x2, respectively) as for
G ∈ DS(1) or G ∈ DS(2), and using the techniques of [24], we find the connected
components of G in linear time on input G.

Acknowledgment. We are grateful to two anonymous referees for their careful
reading and helpful comments.
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