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Abstract. Graph decompositions such as decomposition by clique sepa-
rators and modular decomposition are of crucial importance for designing
efficient graph algorithms. Clique separators in graphs were used by Tar-
jan as a divide-and-conquer approach for solving various problems such
as the Maximum Weight Stable Set (MWS) Problem, Coloring and Min-
imum Fill-in. The basic tool is a decomposition tree of the graph whose
leaves have no clique separator (so-called atoms), and the problem can be
solved efficiently on the graph if it is efficiently solvable on its atoms. We
give new examples where the clique separator decomposition works well
for the MWS problem which also improves and extends various recently
published results. In particular, we describe the atom structure for some
new classes of graphs whose atoms are P5-free (the P5 is the induced
path with 5 vertices) and obtain new polynomial time results for MWS.

1 Introduction

In an undirected graph G = (V, E), a stable (or independent) vertex set is a subset
of mutually nonadjacent vertices. The Maximum Weight Stable (or Independent)
Set (MWS) Problem asks for a stable set of maximum weight sum for a vertex
weight function w on V . The MS problem is the MWS problem where all vertices
have the same weight. Let αw(G) (α(G)) denote the maximum weight (maximum
cardinality) of a stable vertex set in G.

The M(W)S problem is one of the fundamental algorithmic graph problems
which frequently occurs as a subproblem in models in computer science and
operations research. It is closely related to the Vertex Cover Problem and to the
Maximum Clique Problem in graphs (for an extensive survey on the last one,
see [10], which, at the same time, can be seen as a survey on the MWS and the
Vertex Cover Problem; however, since 1999, there are many new results on this
topic).

The MWS Problem is known to be NP-complete in general and remains
NP-complete even on very restricted instances such as K1,4-free graphs [48],
(K1,4,diamond)-free graphs [26], very sparse planar graphs of maximum degree
three and graphs not containing cycles below a certain length [53], in particular
on triangle-free graphs [55].
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On the other hand, it is known to be solvable in polynomial time on many
graph classes by various techniques such as polyhedral optimization, augmenting,
struction and other transformations, modular decomposition, bounded clique-
width and bounded treewidth, reduction of α-redundant vertices, to mention
some basic techniques; for a small selection of papers dealing with particu-
lar graph classes and such techniques for M(W)S, see[2-4,8,9,11-19,21-24,27-
29,32-40,44,45,48,50-52,58]. Many of these papers deal with subclasses of P5-free
graphs, motivated by the fact that the complexity of the M(W)S problem for
P5-free graphs (and even for (P5,C5)-free graphs) is still unknown (for all other
5-vertex graphs H , MS is solvable in polynomial time on (P5,H)-free graphs).
For 2K2-free graphs, however, the following is known:

Farber in [30] has shown that a 2K2-free graph G = (V, E) contains at most
n2 inclusion-maximal independent sets, n = |V |. Thus, the MWS problem on
these graphs can be solved in time O(n4) since Paull and Unger [54] gave a
procedure that generates all maximal independent sets in a graph in O(n2) time
per generated set (see also [61,43]). This result has been generalized to l ≥ 2: lK2-
free graphs have at most n2l−2 inclusion-maximal independent sets [1,5,31,56],
and thus, MWS is solvable on lK2-free graphs in time O(n2l).

Obviously, the MWS problem on a graph G with vertex weight function w
can be reduced to the same problem on antineighborhoods of vertices in the
following way:

αw(G) = max{w(v) + αw(G[N(v)]) | v ∈ V }
Now, let Π denote a graph property. A graph is nearly Π if for each of its

vertices, the subgraph induced by the set of its nonneighbors has property Π .
(Note that this notion appears in the literature in many variants, e.g., as nearly
bipartite graphs [6].)

Thus, whenever MWS is solvable in time T on a class with property Π then
it is solvable on nearly Π graphs in time n · T . For example, Corneil, Perl and
Stewart [27] gave a linear time algorithm for MWS on cographs along the cotree
of such a graph. Thus, MWS is solvable in time O(nm) on nearly cographs.
This simple fact, for example, immediately implies Theorem 1 of [32] (which is
formulated in [32] for the Maximum Clique Problem and shown there in a more
complicated way). For other examples where this approach is helpful, see [14].

A famous divide-and-conquer approach by using clique separators (also called
clique cutsets) is described by Tarjan in [60] (see also [62]). For various problems
on graphs such as Minimum fill-in, Coloring, Maximum Clique, and the MWS
problem, it works well in a bottom-up way along a clique separator tree (which is
not uniquely determined but can be constructed in polynomial time for a given
graph). The leaves of such a tree, namely the subgraphs not containing clique
separators are called atoms in [60]. Whenever MWS is solvable in time T on the
atoms of a graph G, it is solvable in time n2 · T on G. However, few examples
are known where this approach could be applied for obtaining a polynomial time
MWS algorithm on a graph class.

Modular decomposition of graphs is another powerful tool. The decomposi-
tion tree is uniquely determined and can be found in linear time [46]. The prime
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Fig. 1. The P2 + P3, its complement co-(P2 + P3) (called Q), and two Q extensions,

called F1 and F2

nodes in the tree are the subgraphs having no homogeneous sets (definitions are
given later). Again, various problems can be solved efficiently bottom-up along
the modular decomposition tree, among them Maximum Clique, and the MWS
problem, provided they can be solved efficiently on the prime nodes. In [14], it
was shown that a combination of both decompositions is helpful for the MWS
problem: If MWS is solvable in time T on prime atoms (i.e., prime subgraphs
without clique cutset) of the graph G then it is solvable in time n2 · T on G.

One of the examples where the clique separator approach works well is given
by Alekseev in [3] showing that atoms of (P5,co-(P2 + P3))-free graphs (the
(P2 + P3) is the graph with five vertices, say a, b, c, d, e and edges ab, cd, de) are
3K2-free which implies that the MWS problem is solvable in time O(n8) on this
graph class (see Figure 1 for the co-(P2 + P3)).

Our main results in this paper are the following ones:

(i) Atoms of (P5,Q)-free graphs are either nearly (P5, P5, C5)-free or specific
(i.e., a simple type of graphs defined later for which the MWS problem can
be solved in the obvious way). This leads to an O(n4m) time algorithm for
MWS on graphs whose atoms are (P5,Q)-free which improves and extends
Alekseev’s result on these graphs [3] (and also the corresponding result of
[35] on (P5, C5, Q)-free graphs).

(ii) Prime atoms of (P5,F1)-free graphs are 3K2-free (see Figure 1 for the F1).
By [14], this implies polynomial time for MWS on (P5,F1)-free graphs which
extends corresponding polynomial time results on (P5,Q)-free graphs, on
(P5,co-chair)-free graphs [24], and on (P5,P )-free graphs [14,22,44] (note,
however, that the time bound for (P5,F1)-free graphs is much worse than
on the last two subclasses mentioned here).

(iii) Atoms of (P5,F2)-free graphs are 4K2-free (see again Figure 1 for the F2).
This also extends the result on (P5,Q)-free graphs.

(iv) Finally, we show that for every fixed k, MS can be solved in polynomial
time for (P5,Hk)-free graphs (see Figure 3 for the Hk which extends F1

and F2).

The first three results give new examples for the power of clique separators.
For space limitations, all proofs are omitted but can be found in the full

version of this paper.

.
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2 Basic Notions

Throughout this paper, let G = (V, E) be a finite undirected graph without
self-loops and multiple edges and let |V | = n, |E| = m. Let V (G) = V denote
the vertex set of graph G. For a vertex v ∈ V , let N(v) = {u | uv ∈ E} denote
the (open) neighborhood of v in G, let N [v] = {v} ∪ {u | uv ∈ E} denote the
(closed) neighborhood of v in G, and for a subset U ⊆ V and a vertex v /∈ U , let
NU (v) = {u | u ∈ U, uv ∈ E} denote the neighborhood of v with respect to U .
The antineighborhood N(v) is the set V \N [v] of vertices different from v which
are nonadjacent to v. We also write x ∼ y for xy ∈ E and x �∼ y for xy �∈ E.

For U ⊆ V , let G[U ] denote the subgraph of G induced by U . Throughout
this paper, all subgraphs are understood to be induced subgraphs. Let F denote
a set of graphs. A graph G is F-free if none of its induced subgraphs is in F .

A vertex set U ⊆ V is stable (or independent) in G if the vertices in U
are pairwise nonadjacent. For a given graph with vertex weights, the Maximum
Weight Stable Set (MWS) Problem asks for a stable set of maximum vertex
weight.

Let co-G = G = (V, E) denote the complement graph of G. A vertex set
U ⊆ V is a clique in G if U is a stable set in G. Let K� denote the clique with �
vertices, and let �K1 denote the stable set with � vertices. K3 is called triangle.
G[U ] is co-connected if G[U ] is connected.

Disjoint vertex sets X, Y form a join, denoted by X 1©Y (co-join, denoted
by X 0©Y ) if for all pairs x ∈ X , y ∈ Y , xy ∈ E (xy /∈ E) holds. We will also
say that X has a join to Y , that there is a join between X and Y , or that X
and Y are connected by join (and similarly for co-join). Subsequently, we will
consider join and co-join also as operations, i.e., the co-join operation for disjoint
vertex sets X and Y is the disjoint union of the subgraphs induced by X and Y
(without edges between them), and the join operation for X and Y consists of
the co-join operation for X and Y followed by adding all edges xy ∈ E, x ∈ X ,
y ∈ Y .

A vertex z ∈ V distinguishes vertices x, y ∈ V if zx ∈ E and zy /∈ E or
zx �∈ E and zy ∈ E. We also say that a vertex z distinguishes a vertex set
U ⊆ V , z /∈ U , if z has a neighbor and a non-neighbor in U .

Observation 1. Let v ∈ G[V \ U ] distinguish U .

(i) If G[U ] is connected, then there exist two adjacent vertices x, y ∈ U such
that v ∼ x and v �∼ y.

(ii) If G[U ] is co-connected, then there exist two nonadjacent vertices x, y ∈ U
such that v ∼ x and v �∼ y.

A vertex set M ⊆ V is a module if no vertex from V \ M distinguishes two
vertices from M , i.e., every vertex v ∈ V \M has either a join or a co-join to M .
A module is trivial if it is ∅, V (G) or a one-elementary vertex set. A nontrivial
module is also called a homogeneous set.
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A graph G is prime if it contains only trivial modules.
The notion of module plays a crucial role in the modular (or substitution)

decomposition of graphs (and other discrete structures) which is of basic impor-
tance for the design of efficient algorithms - see e.g. [49] for modular decompo-
sition of discrete structures and its algorithmic use and [46] for a linear-time
algorithm constructing the modular decomposition tree of a given graph.

A clique separator or clique cutset in a connected graph G is a clique C such
that G[V \C] is disconnected. An atom of G is a subgraph of G without clique cut-
set. See [60] for some algorithmic aspects of the clique separator decomposition.

For k ≥ 1, let Pk denote a chordless path with k vertices and k − 1 edges.
The P5 is also called house. For k ≥ 3, let Ck denote a chordless cycle with k
vertices and k edges. A hole is a Ck with k ≥ 5, and an antihole is Ck with
k ≥ 5. An odd hole (odd antihole, respectively) is a hole (antihole, respectively)
with odd number of vertices.

The 2K2 is the co-C4. More generally, the �K2 consists of 2� vertices, say,
x1, . . . , x�, y1, . . . , y� and edges x1y1, . . . , x�y�.

For an induced subgraph H of G, a vertex not in H is a k-vertex of H , if it
has exactly k neighbors in H .

A graph is chordal if it contains no induced cycle Ck, k ≥ 4. A graph is weakly
chordal if it contains no hole and no antihole. See [20] for a detailed discussion of
the importance and the many properties of chordal and weakly chordal graphs.
Note that chordal graphs are those graphs whose atoms are cliques.

For a linear order (v1, . . . , vn) of the vertex set V , a well-known coloring
heuristic assigns integers to the vertices from left to right such that each vertex
vi gets the smallest positive integer assigned to no neighbor vj , j < i, of vi.
Chvátal defined the important notion of a perfect order of a graph G = (V, E)
as a linear order (v1, . . . , vn) of V such that for each k ≤ n, the number of
colors used by the preceding coloring heuristic equals the chromatic number of
G[{v1, . . . , vk}].

A graph is perfectly orderable if it has a perfect order. See [20] for various
characterizations and properties of these graphs. In particular, recognizing per-
fectly orderable graphs is NP-complete [47]). A graph G is perfectly ordered if
a perfect order of G is given. Algorithmic consequences for perfectly orderable
graphs rely heavily on this assumption.

3 Atoms of (P5, Q)-Free Graphs Are Nearly
(P5, P5, C5)-Free or Specific

In this section, we improve the following result:

Theorem 1 (Alekseev [3]). Atoms of (P5, Q)-free graphs are 3K2-free.

Since 3K2-free graphs have at most n4 maximal stable sets, the MWS prob-
lem is solvable in time O(n8) on (P5,Q)-free graphs by the clique cutset approach
of Tarjan and a corresponding enumeration algorithm for all maximal stable sets
in a 3K2-free graph. Theorem 1, however, does not give much structural insight.

A. Brandstädt, V.B Le, and S. Mahfud.
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Fig. 2. A two-vertex extension xC6 of the C6 and its complement graph, the co-xC6

Our main result of this section, namely Theorem 2, shows the close connection
of (P5, Q)-free graphs to known classes of perfect graphs and in particular leads
to a faster MWS algorithm. Preparing this, we have to define a simple type of
graphs which results from a certain extension of the C6 by two vertices (which
we call xC6 or co-xC6) and the complement of this graph (see Figure 2).

A graph is specific if it consists of a co-xC6 H , a stable set consisting of
2-vertices of H having the same neighbors as one of the degree 2 vertices in H ,
and a clique U of universal (i.e., adjacent to all other) vertices. Note that the
MWS problem for specific graphs can be solved in the obvious way.

Theorem 2. Atoms of (P5, Q)-free graphs are either nearly (P5, P5, C5)-free or
specific graphs.

The proof of Theorem 2 is based on the subsequent Lemmas 1, 2 and 3.

Lemma 1. Atoms of (P5, Q)-free graphs are nearly P5-free.

Lemma 2. Atoms of (P5, Q)-free graphs containing an induced subgraph xC6

are specific graphs.

Lemma 3. Atoms of (P5, Q)-free graphs are either nearly C5-free or specific
graphs.

In [25], it has been observed that (P5, P5, C5)-free graphs are perfectly order-
able, and a perfect order of such a graph can be constructed in linear time by
a degree order of the vertices. Thus, also for G, a perfect order can be obtained
in linear time. In [42], Hoàng gave an O(nm) time algorithm for the Maximum
Weight Clique problem on a perfectly ordered graph (i.e., with given perfect
order). This means that the MWS problem on (P5, P5, C5)-free graphs can be
solved in time O(nm) and consequently, it can be solved on nearly (P5, P5, C5)-
free graphs in time O(n2m).

Now, by Theorem 2, MWS is solvable in time O(n2m) time on atoms of
(P5,Q)-free graphs. Then the clique separator approach of Tarjan implies:

Corollary 1. The MWS problem can be solved in time O(n4m) on graphs whose
atoms are (P5, Q)-free.

Note that this class is not restricted to (P5, Q)-free graphs; it is only required
that the atoms are (P5, Q)-free. Thus, it contains, for example, all chordal graphs.
The same remark holds for the other sections.
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(P5, P5, C5)-free graphs are also those graphs which are Meyniel and co-
Meyniel (see [20]); Meyniel graphs can be recognized in time O(m2) [57]. Thus,
nearly (P5, P5, C5)-free graphs can be recognized in time O(n5) (which is even
better than O(n4m)).

Since (P5, P5, C5)-free graphs are weakly chordal, another consequence of
Theorem 2 is:

Corollary 2. Atoms of (P5, Q)-free graphs are either nearly weakly chordal or
specific.

Note that weakly chordal graphs can be recognized in time O(m2) [7,41].
Thus, recognizing whether G is nearly weakly chordal can be done in time
O(nm2). The time bound for MWS on weakly chordal graphs, however, is O(n4)
[59], and thus, worse than the one for (P5, P5, C5)-free graphs.

4 Minimal Cutsets in P5-Free Graphs with �K2

In this section we will collect some useful facts about P5-free graphs that contain
an induced �K2. These facts will be used to prove our main results in Section 5
and represent a more detailed investigation of the background of Alekseev’s
Theorem 1.

Let � ≥ 2 be an integer, and let G be a P5-free graph containing an induced
H = �K2 with E(H) = {e1, e2, . . . , e�}. Let S ⊆ V (G) \ V (H) be an inclusion-
minimal vertex set such that, for i �= j, ei and ej belong to distinct connected
components of G[V \ S]. S is also called a minimal cutset for H . For 1 ≤ i ≤ �,
let Hi be the connected component of G[V \ S] containing the edge ei.

Observation 2.

(i) ∀v ∈ S: N(v) ∩ Hi = ∅ for all i ∈ {1, 2, . . . , �}, or N(v) ∩ Hi �= ∅ and
N(v) ∩ Hj �= ∅ for at least two distinct indices i, j.

(ii) ∀v ∈ S: v distinguishes at most one Hi, i ∈ {1, 2, . . . , �}.
By Observation 2, S can be partitioned into pairwise disjoint subsets as

follows. For L ⊆ {1, 2, . . . , �}, |L| ≥ 2, let

SL := {v ∈ S | (∀i ∈ L, N(v) ∩ Hi �= ∅) ∧ (∀j �∈ L, N(v) ∩ Hj = ∅)},
and

S0 := S \ ( ⋃

|L|≥2

SL

)

as well as
R0 := V \ (S ∪ H1 ∪ H2 ∪ · · · ∪ H�).

Note that (R0 ∪ S0) 0©(H1 ∪ H2 ∪ · · · ∪ H�).
In what follows, L, M, N stand for subsets of {1, 2, . . . , �} with at least two el-

ements. Two such subsets are called incomparable if each of them is not properly
contained in the other. Incomparable sets L, M are overlapping if L ∩ M �= ∅.
Note that disjoint sets are mutually incomparable.

A. Brandstädt, V.B Le, and S. Mahfud.
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Observation 3. Let L and M be incomparable. Then, for all adjacent vertices
x ∈ SL, y ∈ SM , x 1©(

⋃
i∈L\M Hi) and y 1©(

⋃
j∈M\L Hj).

Observation 4. Let L and M be overlapping. Then

(i) SL 1©SM , and
(ii) if SL �= ∅ and SM �= ∅ then SL 1©(

⋃
j∈L\M Hj) and SM 1©(

⋃
i∈M\L Hi).

Observation 5. Let M be a proper subset of L. Then for all nonadjacent ver-
tices x ∈ SM , y ∈ SL,

(i) y 1©(
⋃

i∈L\M Hi), and
(ii) for all j ∈ M , N(x) ∩ Hj ⊆ N(y) ∩ Hj.

Observation 6. Let L ∩ N = ∅. If some vertex in SL is nonadjacent to some
vertex in SN , then for all subsets M overlapping with L and with N , SM = ∅.

For each subset L ⊆ {1, 2, . . . , �} with at least two elements we partition SL

into pairwise disjoint subsets as follows. Let

XL := {v ∈ SL | ∀i ∈ L, v 1©Hi},
and for each i ∈ L,

Y i
L := {v ∈ SL | v distinguishes Hi}.

By Observation 2 (ii),

∀i ∈ L, Y i
L 1©( ⋃

j∈L\{i}
Hj

)
and SL = XL ∪

⋃

i∈L

Y i
L.

Observation 7. If |L| ≥ 3 then for all distinct i, j ∈ L, Y i
L 1©Y j

L .

Observation 8. If |L| ≥ 3 and G is F1-free or F2-free then XL 1©(SL \ XL).

5 (P5, F1)-Free and (P5, F2)-Free Graphs

Theorem 3. Prime (P5, F1)-free graphs without clique cutset are 3K2-free.

By Theorem 3, prime (P5, F1)-free atoms are 3K2-free, hence MWS can be
solved in time O(n5m) on prime (P5, F1)-free atoms with n vertices and m edges.
Combining with the time bound for MWS via clique separators, we obtain:

Corollary 3. The MWS problem can be solved in time O(n7m) for graphs whose
atoms are (P5, F1)-free.

Theorem 4. (P5, F2)-free graphs without clique cutset are 4K2-free.

By Theorem 4, (P5, F2)-free atoms are 4K2-free, hence MWS can be solved in
time O(n7m) on (P5, F2)-free atoms. Combining again with the clique separator
time bound for MWS, we obtain:

Corollary 4. Maximum Weight Stable Set can be solved in time O(n9m) for
graphs whose atoms are (P5, F2)-free graphs.
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6 Conclusion

In this paper, we give new applications of the clique separator approach, combine
it in one case with modular decomposition and extend some known polynomial
time results for the Maximum Weight Stable Set problem. In particular, we have
shown:

(i) Atoms of (P5,Q)-free graphs are either nearly (P5, P5, C5)-free or specific
which leads to an O(n4m) time algorithm for MWS on graphs whose atoms
are (P5,Q)-free improving a result by Alekseev [3].

(ii) Prime atoms of (P5, F1)-free graphs are 3K2-free.
(iii) Atoms of (P5, F2)-free graphs are 4K2-free.

As a consequence, the Maximum Weight Stable Set problem is polynomially
solvable for graphs whose atoms are (P5, F1)-free ((P5, F2)-free, respectively),
which tremendously generalizes various polynomially solvable cases known be-
fore.

One way in trying to show that the Maximum Weight Stable Set problem
can be solved in polynomial time on a large class of P5-free graphs containing
both classes of (P5, F1)-free graphs and of (P5, F2)-free graphs, is to consider the
class of (P5, Hk)-free graphs, for each fixed integer k ≥ 2; see Figure 3.

Unfortunately, the technique used in this paper cannot be directly applied for
(P5, Hk)-free graphs. Namely, for each fixed � ≥ 3, there exist prime (P5, H2)-
free graphs that contain an induced �K2 but no clique cutset. However, the
unweighted case is easy:

Theorem 5. For each fixed positive integer k, the Maximum Stable Set problem
can be solved in polynomial time for (P5, Hk)-free graphs.

Open Problem. Let H−
k denote the subgraph of Hk without the degree 1

vertex. Is the Maximum Weight Stable Set problem solvable in polynomial time
for (P5, H

−
k )-free graphs (k ≥ 3 fixed)? If yes, the proof of Theorem 5 shows that

it is also polynomially solvable for (P5, Hk)-free graphs, for each fixed positive
integer k.

�


���
� � 


Fig. 3. The graph Hk

A. Brandstädt, V.B Le, and S. Mahfud.
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More generally, the following question is of interest: Suppose that MS is
polynomially solvable for a certain graph class. Is MWS solvable in polynomial
time on the same graph class, too?
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11. A. Brandstädt, (P5,diamond)-Free Graphs Revisited: Structure and Linear Time
Optimization, Discrete Applied Math. 138 (2004) 13-27
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15. A. Brandstädt, C.T. Hoàng, V.B. Le, Stability Number of Bull- and Chair-Free
Graphs Revisited, Discrete Applied Math. 131 (2003) 39-50
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