
Information Processing Letters 98 (2006) 133–138

www.elsevier.com/locate/ipl

Structure and linear time recognition of 3-leaf powers

Andreas Brandstädt ∗, Van Bang Le

Institut für Informatik, Universität Rostock, D-18051 Rostock, Germany

Received 24 September 2005; received in revised form 5 January 2006; accepted 11 January 2006

Available online 3 February 2006

Communicated by A.A. Bertossi

Abstract

A graph G is the k-leaf power of a tree T if its vertices are leaves of T such that two vertices are adjacent in G if and only
if their distance in T is at most k. Then T is the k-leaf root of G. This notion was introduced and studied by Nishimura, Ragde,
and Thilikos motivated by the search for underlying phylogenetic trees. Their results imply a O(n3) time recognition algorithm for
3-leaf powers. Later, Dom, Guo, Hüffner, and Niedermeier characterized 3-leaf powers as the (bull, dart, gem)-free chordal graphs.
We show that a connected graph is a 3-leaf power if and only if it results from substituting cliques into the vertices of a tree. This
characterization is much simpler than the previous characterizations via critical cliques and forbidden induced subgraphs and also
leads to linear time recognition of these graphs.
 2006 Elsevier B.V. All rights reserved.
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1. Introduction

As Nishimura et al. mention in [8], “a fundamental
problem in computational biology is the reconstruction
of the phylogeny, or evolutionary history, of a set of
species or genes, typically represented as a phylogenetic
tree . . . ”. Motivated by this background, in [8], the cru-
cial notion of k-leaf power and k-leaf root is defined as
follows:

Let G = (V ,E) be a finite undirected graph. G is a k-
leaf power if there is a tree T with V as leaves such that
for all x, y ∈ V , xy ∈ E if and only if their distance in
T is at most k: dT (x, y) � k. T is then called a k-leaf
root of G.
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Obviously, a graph is a 2-leaf power if and only if
it is the disjoint union of cliques, i.e., it contains no in-
duced P3.

Nishimura et al. [8] give (very complicated) O(n3)

time recognition algorithms for recognizing 3-leaf pow-
ers and 4-leaf powers, respectively, and constructing
3-leaf roots (4-leaf roots, respectively), if existent. Their
algorithm relies on the concept of the (directed) clique
graph of a graph. For k � 5, no characterization of
k-leaf powers and no efficient recognition is known.

In [4], Dom et al. give a forbidden subgraph char-
acterization of 3-leaf powers which, however, does not
lead to a faster recognition of 3-leaf powers. A basic
tool in [4] is the concept of critical cliques of a graph
introduced in [6].

We will avoid the construction of (directed or crit-
ical) clique graphs and give a new characterization of
3-leaf powers which, among various others, leads to lin-
ear time recognition of these graphs.
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2. Basic notions

Throughout this note, let G = (V ,E) be a finite undi-
rected graph without self-loops and multiple edges with
vertex set V and edge set E, and let |V | = n, |E| = m.
For a vertex v ∈ V , let NG(v) = N(v) = {u | uv ∈ E}
denote the (open) neighborhood of v in G, and let
NG[v] = N [v] = {v} ∪ {u | uv ∈ E} denote the closed
neighborhood of v in G. A clique is a set of vertices
which are mutually adjacent. A stable set is a set of ver-
tices which are mutually nonadjacent.

Two vertices x, y ∈ V are true twins if N [x] = N [y],
i.e., x and y have the same neighbors and are adjacent to
each other. Two vertices are false twins if they have the
same neighbors and are nonadjacent to each other. The
true twin operation (false twin operation, respectively)
adds a new vertex y to graph G which is a true twin
(false twin, respectively) to an already existing vertex x

in G. The pendant vertex operation adds a new vertex y

being adjacent to only one vertex x in G.
A vertex subset U ⊆ V is a module in G if for all

v ∈ V \ U , either v is adjacent to all vertices of U or v

is adjacent to none of them. A clique module in G is a
module which induces a clique in G. Obviously, a set of
vertices that are pairwise true twins are a clique module.

Let dG(x, y) (or d(x, y) for short if G is understood)
be the length, i.e., number of edges, of a shortest path in
G between x and y. Let Nk

G(x) = {y | dG(x, y) = k}
and let Gk = (V ,Ek) with xy ∈ Ek if and only if
dG(x, y) � k denote the kth power of G.

For U ⊆ V , let G[U ] denote the subgraph of G in-
duced by U . Throughout this paper, all subgraphs are
understood to be induced subgraphs. Let F denote a set
of graphs. A graph G is F -free if none of its induced
subgraphs is in F .

For k � 1, let Pk denote a chordless path with k ver-
tices and k − 1 edges, and for k � 3, let Ck denote a
chordless cycle with k vertices and k edges.

A graph is chordal if it contains no induced Ck , k �
4. A vertex is simplicial in G if its neighborhood N [v] is
a clique. A vertex ordering (v1, . . . , vn) is a perfect elim-
ination ordering (p.e.o.) of G if for every i ∈ {1, . . . , n},
vi is simplicial in the subgraph Gi = G[{vi, . . . , vn}]. It
is well known that a graph is chordal if and only if it has
a p.e.o. [11].

A graph is strongly chordal if it is chordal and “sun-
free”—see [2] for the definition of a sun and for various
characterizations of strongly chordal graphs. A vertex is
simple in G [5] if the closed neighborhoods of all ver-
tices x, y ∈ N [v] are pairwise comparable with respect
to set inclusion. Every simple vertex is simplicial [5].
A vertex ordering (v1, . . . , vn) is a simple elimination
ordering (s.e.o.) of G if for every i ∈ {1, . . . , n}, vi is
simple in the subgraph Gi = G[{vi, . . . , vn}]. Farber [5]
has shown that a graph is strongly chordal if and only if
it has a s.e.o.

3. Some basic facts on k-leaf powers

The following facts on k-leaf powers are well known.

Proposition 1.

(i) Every induced subgraph of a k-leaf power is a k-
leaf power.

(ii) A graph is a k-leaf power if and only if each of its
connected components is a k-leaf power.

Proof. (i) Let T be a k-leaf root of a graph G, and let H

be an induced subgraph of G. Then, by definition, the
tree T ′ obtained from T by deleting the leaves which
correspond to vertices in G − H is a k-leaf root of H .

(ii) The only-if part follows from (i). For the if-part,
assume that each connected component Gi of G has
a k-leaf root Ti . Take a new vertex v and connect the
trees Ti and v by a path of length k; the resulting tree is
clearly a k-leaf root of G. �

In [3,7,10], it is shown that the class of strongly
chordal graphs is closed under powers:

Proposition 2. ([3,7,10]) If G is strongly chordal then
for every k � 1, Gk is strongly chordal.

Let T be a k-leaf root of a graph G. Then, by defini-
tion, G is isomorphic to the subgraph of T k induced by
the leaves of T . Since trees are strongly chordal and in-
duced subgraphs of strongly chordal graphs are strongly
chordal, Proposition 2 implies:

Proposition 3. For every k � 1, k-leaf powers are
strongly chordal.

This strengthens the fact that k-leaf powers are
chordal which is observed in previous papers dealing
with k-leaf powers. The following facts are likely to be
known.

Proposition 4. Every k-leaf power is a (k + 2)-leaf
power.

Proof. Let T be a k-leaf root of G, and let T ′ be the
tree obtained from T by subdividing each pendant edge
with a new vertex. Thus, the leaves of T ′ are exactly
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those of T . Clearly, for all x, y ∈ V (G), xy ∈ E(G) if
and only if k � dT (x, y) = dT ′(x, y) − 2, hence T ′ is a
(k + 2)-leaf of G. �

We do not know, in general, if any k-leaf power is
also a (k + 1)-leaf power. For 3-leaf powers, however,
we have:

Proposition 5. Every 3-leaf power is a k-leaf power for
all k � 3.

Proof. Let T be a 3-leaf root of a graph G, and let T ′
be the tree obtained from T by subdividing each non-
pendant edge with exactly k − 3 new vertices. Thus,
the leaves of T ′ are exactly those of T . Clearly, for
all x, y ∈ V (G), xy ∈ E(G) if and only if dT (x, y) =
dT ′(x, y) = 2, or dT (x, y) = 3 and dT ′(x, y) = k. Hence
T ′ is a k-leaf of G. �

Substituting a vertex v in a graph G by a graph H re-
sults in the graph obtained from (G− v)∪H by adding
all edges between vertices in NG(v) and vertices in H .

Proposition 6. For every graph G, and for every k � 2,
G is a k-leaf power if and only if every graph obtained
from G by substituting the vertices by cliques is a k-leaf
power.

Proof. If there is a k-leaf root T for graph G = (V ,E),
i.e., T is a tree with leaf set V such that for all x, y ∈ V ,
xy ∈ E if and only if dT (x, y) � k and G is the result
of substituting a vertex u ∈ V by a clique Q then attach
all Q vertices at the same T parent as u; the resulting
tree T ′ is a k-leaf root for G′. The converse direction
obviously holds. �
4. Characterizations of 3-leaf powers

In [4], 3-leaf powers were characterized as the
chordal (bull, dart, gem)-free graphs (see Fig. 1 for the
bull, dart and gem).

In this section, we obtain new characterizations of
3-leaf powers which lead to linear time recognition of
these graphs. For this purpose, we collect some further
basic facts.

Observation 7. Every tree is a 3-leaf power, and a 3-
leaf root can be determined in linear time.

Proof. For a tree T = (V ,E), let T ′ be the tree obtained
from T by adding a copy v′ for each v ∈ V (i.e., the
new vertices v′ are the leaves of T ′) and adding the new
Fig. 1. The bull, dart and gem have no 3-leaf root.

edges vv′ to E. Clearly, xy ∈ E if and only if dT ′(x′, y′)
� 3. �

By Proposition 1(ii), we obtain:

Corollary 8. Every forest is a 3-leaf power, and a 3-leaf
root of it can be determined in linear time.

Thus, by Proposition 6, graphs obtained from a forest
by substituting the vertices by cliques are 3-leaf powers.
We will see that these graphs are exactly the 3-leaf pow-
ers. By Proposition 1(ii), we can assume that the graph
is connected.

Theorem 9. A connected graph G is a 3-leaf power if
and only if G is the result of substituting cliques into the
vertices of a suitable tree.

Proof. First assume that the connected graph G =
(V ,E) is a 3-leaf power, and let T be a 3-leaf root for
G with leaf set V . Let V = V1 ∪ · · · ∪ Vk be a partition
of V with respect to common parent nodes in T , i.e., Vi

is the (nonempty) set of T -leaves in V having the same
parent node ti in T .

Claim 10. If for all i ∈ {1, . . . , k}, |Vi | = 1 then G is a
tree.

Proof. Assume not. Since G, as a 3-leaf power, is
chordal, G contains a C3, say with vertices a, b, c.
Let x′ be the parent node in T for x ∈ {a, b, c}. Then
a′, b′, c′ are pairwise different, and since ab ∈ E, bc ∈
E and ac ∈ E, i.e., their distance in T is at most 3, a′b′,
b′c′ and c′a′ must be edges in T , i.e., the tree T contains
a C3—contradiction. This shows Claim 10. �

Obviously, the sets Vi , i ∈ {1, . . . , k}, are clique mod-
ules in G. If G does not fulfill the assumption that for
all i ∈ {1, . . . , k}, |Vi | = 1, then let G∗ be the induced
subgraph of G by taking a representative vertex from
each of the nonempty sets Vi , i ∈ {1, . . . , k}. For G∗,
Claim 10 applies, i.e., G∗ is a tree. Now it is easy to see
that G is the result of substituting the cliques Vi into the
corresponding representative vertices in G∗.

Conversely, assume that G is the result of substitut-
ing the vertices of a suitable tree G∗ by some cliques.
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Then by Observation 7, G∗ is a 3-leaf power, and by
Proposition 6, G is also a 3-leaf power which shows the
theorem. �

The distance-hereditary graphs were characterized
in [1] as the graphs obtained from a single vertex by
repeatedly applying the pendant vertex, true twin and
false twin operations. The graphs which are distance
hereditary and chordal are exactly the gem-free chordal
graphs (see e.g. [2]). Thus, 3-leaf powers are a sub-
class of distance-hereditary graphs. More exactly, one
can show the following:

Corollary 11. A connected graph G is a 3-leaf power
if and only if G is the result of a sequence of pendant
vertex operations, starting with a single vertex, followed
by a sequence of true twin operations.

Proof. First assume that G is a 3-leaf power. Then, by
Theorem 9, G is the result of substituting cliques into
the vertices of a tree T . Let σ1 be a sequence of pendant
vertex operations which generate T . Now the substitu-
tion of cliques into T which produces G can be done by
a sequence σ2 of true twin operations. Thus, G results
from a sequence of pendant vertex operations followed
by a sequence of true twin operations.

Conversely assume that G results from a sequence σ1
of pendant vertex operations, followed by a sequence σ2
of true twin operations. Then σ1 generates a tree T , and
σ2 produces a set of cliques which are substituted into
the vertices of T . Again by Theorem 9, G is a 3-leaf
power. �

Note that if pendant vertex and true twin operations
are mixed then also graphs can be generated which are
no 3-leaf powers; the bull and the dart are such ex-
amples. In particular, the class of 3-leaf powers is not
closed under the pendant vertex operation.

Corollary 11 can also be formulated in the following
way:

Corollary 12. A graph G is a 3-leaf power if and only
if every induced subgraph of G is a forest or has true
twins.

The following Theorem 13 which characterizes 3-
leaf powers in terms of forbidden subgraphs was already
given in [4] using the notion of critical cliques. We will
give a simpler proof for it.

Theorem 13. A graph G is a 3-leaf power if and only if
G is bull-, dart-, and gem-free chordal.
Proof. If G is a 3-leaf power then by Theorem 9, its
connected components result from a tree by substituting
cliques into its vertices. The reader can easily verify that
such graphs are bull-, dart-, and gem-free chordal.

Conversely assume that G is bull-, dart-, and gem-
free chordal. We use Corollary 12 in order to show that
G is a 3-leaf power. It suffices to prove that G itself is
a forest or has true twins since all induced subgraphs of
G are bull-, dart-, and gem-free chordal. Suppose that
G is not a forest. Then, as G is chordal, G has a max-
imal clique Q with at least three vertices. If Q has no
neighbor in G−Q then clearly, every two vertices in Q

form true twins. Now, let v ∈ G − Q be adjacent to a
vertex q1 ∈ Q. As Q is a maximal clique, there is a ver-
tex q2 ∈ Q such that v is nonadjacent to q2. Consider a
vertex q3 ∈ Q \ {q1, q2}.

Now, if v is nonadjacent to q3 then q2, q3 form true
twins since otherwise, if a vertex u distinguishes q2 and
q3, say u is adjacent to q2 and nonadjacent to q3 then
u,v, q1, q2, q3 would induce a bull or dart or gem, or
u,v, q1, q2 would induce a C4 (depending on the possi-
ble edges uq1, uv).

If v is adjacent to q3 then q1, q3 form true twins since
otherwise, if a vertex u distinguishes q1 and q3, say u is
adjacent to q1 and nonadjacent to q3 then u,v, q1, q2, q3

would induce a dart or gem, or u,v, q2, q3 would induce
a C4 (depending on the possible edges uq2, uv). �

It might be an interesting question whether 3-leaf
powers can be characterized in terms of special s.e.o.
The following observations illustrate this. For a simple
vertex v ∈ V , we classify the vertices in N [v] with re-
spect to their closed neighborhood: Two vertices x, y ∈
N [v] are equivalent (x ∼ y) if N [x] = N [y]. Note that
if a graph G is a 3-leaf power then G has a simple
elimination ordering (v1, . . . , vn) such that for all i ∈
{1, . . . , n}, the vertices in N [vi] have only two equiva-
lence classes with respect to ∼ since, by Theorem 13,
G is (bull, dart, gem)-free chordal: Let (v1, . . . , vn) be
a p.e.o. of G. Since induced subgraphs of G are again
(bull, dart, gem)-free chordal, it suffices to discuss v1.
Every simplicial vertex in G is also simple in G since
G is bull-free and chordal. Now assume that there are
vertices x, y ∈ N [v1] with N [v1] ⊂ N [x] ⊂ N [y]. Let
z ∈ N [x]∩N [y]\N [v1] and u ∈ N [y]\(N [v1]∪N [x]).
Then v1, x, y, z,u induce a dart or gem—a contradic-
tion.

The converse direction, however, does not work as
the example of the bull shows. We leave it as an open
problem to characterize 3-leaf powers in terms of spe-
cial s.e.o.
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The following Theorem 14 summarizes the vari-
ous characterizations of 3-leaf powers described above,
and adds one more condition which leads to lin-
ear time recognition. Recall from Section 2 that for
i � 0, Ni

G(v) = {u | dG(v,u) = i}. Thus, in particu-
lar, N0

G(v) = {v}, and N1
G(v) = NG(v). By Proposi-

tion 1(ii), we can assume that G is connected.

Theorem 14 (Structure theorem for 3-leaf powers). For
every connected graph G, the following conditions are
equivalent:

(i) G is a 3-leaf power.
(ii) G is bull-, dart-, and gem-free chordal.
(iii) G is the result of a sequence of pendant vertex op-

erations, starting with a single vertex, followed by
a sequence of true twin operations.

(iv) Every induced subgraph of G is a forest or has true
twins.

(v) G is obtained from a tree T by substituting the ver-
tices of T by cliques.

(vi) G is chordal, and for every simplicial vertex v of G

the following conditions hold for any i � 1 where
Ni stands for Ni

G(v):
(a) Each connected component of G[Ni] is a

clique;
(b) For every x ∈ Ni , N(x)∩Ni−1 is a clique mod-

ule in G. Moreover, if i � 3 then N(x) ∩ Ni−1

is a connected component of G[Ni−1];
(c) For all x, y ∈ Ni , if x, y belong to the same

connected component in G[Ni] or i = 2, then
N(x) ∩ Ni−1 = N(y) ∩ Ni−1;

(d) For all x, y ∈ Ni , if x, y belong to different
connected components in G[Ni] then N(x) ∩
Ni−1 = N(y)∩Ni−1 whenever x and y have a
common neighbor in Ni−1.

Proof. The equivalence (i) ⇔ (ii) is given in Theo-
rem 13.

The equivalence (i) ⇔ (iii) is given in Corollary 11.
The equivalence (i) ⇔ (iv) is given in Corollary 12.
The equivalence (i) ⇔ (v) is given in Theorem 9.
(i) ⇒ (vi) By the equivalence of (i) and (v), we can

assume that G fulfills (v). Thus, let G be obtained from
a tree T by substituting vertices a ∈ V (T ) by cliques
Ca . Then G is clearly chordal (indeed, graphs obtained
from a chordal graph by substituting vertices by cliques
are chordal). Also, it is clear that v ∈ V (G) is a simpli-
cial vertex in G if and only if v ∈ Ca for a leaf a in T .
Let v ∈ V (G) be a simplicial vertex in G and let a be
the leaf of T such that v ∈ Ca , and consider T as rooted
at vertex a. From the assumption on G we have the fol-
lowing facts:

• For all b ∈ V (T ), Cb is a (clique) module in G;
• N1

G(v) = (Ca − v) ∪ Ca′ induces a clique in G

where a′ is the father of a in T ;
• For all i � 2, Ni

G(v) consists of the disjoint cliques
Cb , b ∈ Ni

T (a);
• For all i � 2, for all b ∈ Ni

T (a), for all x, y ∈ Cb:
NG(x)∩Ni−1

G (v) = Cb′ = NG(y)∩Ni−1
G (v) where

b′ ∈ Ni−1
T (a) is the father of b in T ;

• For all i � 2, for all distinct b1, b2 ∈ Ni
T (a), for all

x ∈ Cb1, y ∈ Cb2 : If b1 and b2 have the same fa-
ther d ∈ Ni−1

T (a), then NG(x) ∩ Ni−1
G (v) = Cd =

NG(y) ∩ Ni−1
G (v).

From these facts, the conditions (a)–(d) follow di-
rectly.

(vi) ⇒ (i) Let G satisfy (vi) with an arbitrary simpli-
cial vertex v. Let p be such that Np �= ∅ and V (G) =
N0 ∪ N1 ∪ · · · ∪ Np . A 3-leaf root of G can be con-
structed as follows. Let A := N(N2) ∩ N1 and B :=
{v} ∪ (N1 \ A). Let H be the graph obtained from G

by contracting A, B to a single vertex a, respectively, b,
and each connected component C

(i)
j in G[Ni] to a sin-

gle vertex c
(i)
j , 2 � i � p. By (a)–(d), H is a tree. Let T

be the tree obtained from H by attaching at each vertex
c
(i)
j the set C

(i)
j of leaves, and at a, b the sets A and B ,

respectively, of leaves. By (a)–(d) again, it is easily seen
that T is a 3-leaf root of G. �
5. Linear time recognition of 3-leaf powers

Theorem 14, (i) ⇔ (vi) leads to the following lin-
ear time algorithm that decides if a given graph is a
3-leaf power, and, if so, outputs a 3-leaf root. Note that
by Proposition 1(ii), we may consider connected graphs
only.

Condition (v) of Theorem 14 reminds of the charac-
terization of distance hereditary graphs given in [1] as
the result of pendant vertex, true twin and false twin op-
erations applied to a single vertex.

Algorithm. 3-Leaf-Power
Input: A connected graph G = (V ,E) with |V | = n and

|E| = m.
Output: A 3-leaf root T of G if one exists; otherwise ‘NO’.

(1) if G is chordal then
(2) begin
(3) determine a simplicial vertex v;
(4) compute the sets N1 (v), . . . ,N

p
(v);
G G
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(5) compute the connected component
of G[Ni

G
(v)], 2 � i � p;

(6) if for some 1 � i � p, one of the conditions (a)–(d)
in Theorem 14(vi) fails

(7) then return ‘NO’ and STOP;
(8) return T according to the proof

of (vi) ⇒ (i) in Theorem 14
(9) end

(10) else return ‘NO’.

Theorem 15. Algorithm 3-Leaf-Power is correct
and takes linear time.

Proof. The correctness of the algorithm follows from
Theorem 14. The time bound is O(n + m) since recog-
nition of chordal graphs can be done in linear time [11],
and a simplicial vertex can be determined in linear time,
step (4) can be done in linear time by using Breadth-
First Search, and then, by the usual techniques, (a)–(d)
can be checked in linear time. If all of them are fulfilled,
the contraction of the corresponding sets as described in
the proof of (vi) ⇒ (i) in Theorem 14 can be done in
linear time. �
6. Uniqueness of 3-leaf roots

Finally, we address the natural question how many
3-leaf roots a 3-leaf power may have. Obviously, cli-
ques and disconnected 3-leaf powers have many (non-
isomorphic) 3-leaf roots. We close our discussion on 3-
leaf powers by the following uniqueness properties.

Lemma 16. Every tree with at least three vertices has a
unique 3-leaf root.

Proof. Let B be a tree with at least 3 vertices, and let
T be an arbitrary 3-leaf root of B . Recall that V (B) is
exactly the set of leaves of T . We first prove:

Every vertex t ∈ T \ V (B) is a father

of exactly one leaf b ∈ V (B). (1)

For, if t is not the father of any leaf b ∈ V (B), B would
be disconnected. If t is the father of two leaves b1 �=
b2 in V (B), b1, b2 would form true twins in B , and B

would have a triangle containing b1, b2.
By (1) and by definition of T , the mapping b 
→ t :=

father of b in T is a bijection such that bb′ ∈ E(B) if
and only if t t ′ ∈ E(T \ V (B)). That is, T \ V (B) is
isomorphic to B . This and (1) show that, given B , the 3-
leaf root T of B is unique. This shows Lemma 16. �
Theorem 17. Every connected 3-leaf power different
from a clique has a unique 3-leaf root.
Proof. Let G be a connected 3-leaf power that is not a
clique, and let T be an arbitrary 3-leaf root of G. We
will show by induction that T is unique. If G is a tree,
T is unique by Lemma 16. Otherwise, by Corollary 11,
G has true twins x, y. As G has more than two vertices,
x and y must have the same father in T . As G is con-
nected and not a clique, G − y is connected and not a
clique, too. By induction, T −y is the unique 3-leaf root
of G − y. Since y is uniquely determined by the father
of x, T is therefore the unique 3-leaf root of T . �

Note that for every k � 4, k-leaf roots of a connected
non-clique k-leaf power are not unique in general.

7. Conclusion

Another way of giving a linear time recognition of
3-leaf powers is modular decomposition; however, we
prefer our approach expressed in Algorithm 3-Leaf-
Power since it is conceptually much simpler and more
practical.

Open problem. Characterization and polynomial time
recognition of k-leaf powers for k � 5.

After finishing this note we learnt that Rautenbach
[9] independently found the result described in Theo-
rem 9.
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